期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于CFD的循环生物絮团系统养殖池固相分布均匀性评价 被引量:15
1
作者 史明明 阮贇杰 +4 位作者 刘晃 郭希山 叶章颖 韩志英 朱松明 《农业工程学报》 EI CAS CSCD 北大核心 2017年第2期252-258,共7页
为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid dynamics)技术,对两种系统养殖池固液气三相三维流动进行了数值模拟,分析了两... 为探索循环生物絮团系统相对原位生物絮团系统在生物絮团分布均匀性方面的改善,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学(computational fluid dynamics)技术,对两种系统养殖池固液气三相三维流动进行了数值模拟,分析了两种养殖池的液相速度云图、液相流线图以及固相分布特性。模拟结果表明:在水力停留时间为0.90 h时,循环养殖池流场相对复杂,流向变化较乱且分布于整个空间,紊流相对剧烈,流场速度大小分布更均匀,死区相对较少,固相主要分布在中心大范围区域,便于循环,在底部未出现沉积现象,能够避免生产中由于生物絮团在桶底角处的沉积造成厌氧病菌的滋生。另外,循环养殖池生物絮团固相体积分数约为0.1,比较适宜罗非鱼等养殖对象的生长。通过与实测数据对比,模型的模拟值误差均在20%之内,模拟结果可信,该研究说明循环生物絮团系统能够解决原位生物絮团系统中生物絮团分布不均匀以及流场死角多的问题。 展开更多
关键词 水产养殖 流体力学 流场 循环生物絮团系统 养殖池 水力停留时间 多相流
在线阅读 下载PDF
基于CFD的循环生物絮团系统涡旋分离器结构参数优化 被引量:2
2
作者 史明明 朱松明 +3 位作者 叶章颖 韩志英 李建平 阮贇杰 《农业机械学报》 EI CAS CSCD 北大核心 2017年第9期287-294,278,共9页
为提高循环生物絮团系统涡旋分离器分离效率,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学技术,对3种不同筒径比α涡旋分离器内固液两相三维流动进行了数值模拟,并分析了相关速度云图、速度矢量云图、流体迹线云图、内部固相分... 为提高循环生物絮团系统涡旋分离器分离效率,以欧拉-欧拉多相湍流模型为理论框架,运用计算流体力学技术,对3种不同筒径比α涡旋分离器内固液两相三维流动进行了数值模拟,并分析了相关速度云图、速度矢量云图、流体迹线云图、内部固相分布以及出口处固相体积分数变化等。模拟结果表明:在进水口进水速度为0.36 m/s时,随着筒径比α的增大,3种涡旋分离器套筒外侧以及进水口以下部分速度流场差别较小,但套筒内流场湍流逐渐加剧,同时,套筒外侧附近和套筒内部,涡旋逐渐加剧,增加能耗,且不利于固体颗粒的沉积,总体而言,涡旋分离器在α为1.5之后分离效率下降,并保持相对稳定,具体表现为,当涡旋分离器α为1.5时,内部固相体积分数相对较高,而出口处固相体积分数较低,随着α增大,其分离效率由α为1.5时的27%降至α为2.0时的17%,并随着α再次增至2.5时,分离效率保持基本不变。涡旋分离器流场速度的实测结果与模拟结果基本一致,而分离效率存在一定差异,但是变化规律相同,表明数值模拟在优化涡旋分离器结构方面是可行的。 展开更多
关键词 循环生物絮团系统 涡旋分离器 计算流体力学 多相流 数值模拟
在线阅读 下载PDF
基于PIV的循环式生物絮团系统涡旋分离器内流场研究 被引量:1
3
作者 史明明 孙先鹏 +3 位作者 朱松明 刘晃 龙丽娜 阮贇杰 《农业机械学报》 EI CAS CSCD 北大核心 2019年第1期299-306,共8页
为分析循环式生物絮团系统涡旋分离器的内流场特性,基于非接触式流场测试PIV (Particle image velocimetry)技术对试验规模涡旋分离器内流场进行测量,分析了该涡旋分离器在不同水力停留时间工况下(248、83、49 s)涡旋分离器内部流场的... 为分析循环式生物絮团系统涡旋分离器的内流场特性,基于非接触式流场测试PIV (Particle image velocimetry)技术对试验规模涡旋分离器内流场进行测量,分析了该涡旋分离器在不同水力停留时间工况下(248、83、49 s)涡旋分离器内部流场的合速度、分速度和涡量等分布情况。结果表明:不同水力停留时间条件下,涡旋分离器内套筒内部区域的左下角和上部区域均表现一定的涡旋,同时随着水力停留时间的加快,中间内套筒内的颗粒速度方向大致相同,仅在筒壁附近产生小的二次流,同时沉积仓内的颗粒速度方向趋于一致;虽然水力停留时间加快,但轴向和径向的合速度变化不大,且不同速度占据的比例基本相同;不同工况下顺时针和逆时针涡量基本相同,且水力停留时间越慢,流场的涡量相对越小,并随着水力停留时间加快涡量分布趋向均匀,即高涡量区域逐渐增加; PIV试验由于激光能量一定,其穿透能力有限,因此,对于复杂结构的PIV试验所获得的结果有待改进。 展开更多
关键词 循环生物系统 涡旋分离器 流场 PIV测量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部