期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
基于循环生成对抗网络的逆时偏移成像结果优化
1
作者 黄建平 刘博文 +6 位作者 黄韵博 孙加星 李亚林 雷刚林 段文胜 陈飞旭 侯中根 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期36-45,共10页
在常规逆时偏移方法基础上,通过引入循环生成对抗网络(CycleGAN)发展一种基于循环生成对抗网络的逆时偏移成像结果优化方法。首先构建包含两个生成器和两个判别器的CycleGAN。在对抗损失、循环一致性损失函数的基础上,添加身份损失函数... 在常规逆时偏移方法基础上,通过引入循环生成对抗网络(CycleGAN)发展一种基于循环生成对抗网络的逆时偏移成像结果优化方法。首先构建包含两个生成器和两个判别器的CycleGAN。在对抗损失、循环一致性损失函数的基础上,添加身份损失函数,以避免训练过度;然后,组建样本集来训练网络,使其学习常规逆时偏移成像结果和最小二乘逆时偏移成像结果之间的映射关系;最后,利用其他合成数据和实际资料测试网络效果。结果表明,提出的基于循环生成对抗网络的逆时偏移成像结果优化方法在获得高精度、高信噪比成像结果的同时有效地提高了计算效率。 展开更多
关键词 循环生成对抗网络 残差网络 逆Hessian 最小二乘逆时偏移
在线阅读 下载PDF
基于循环卷积生成对抗网络的风机齿轮箱故障诊断 被引量:3
2
作者 赵承利 张璐 钟麦英 《山东科技大学学报(自然科学版)》 CAS 北大核心 2024年第1期109-118,共10页
风机齿轮箱是风力涡轮传动系统中的关键部分,其故障发生随机、故障样本数量不足,严重影响故障诊断的准确性。针对此问题,提出一种基于循环卷积生成对抗网络的风机齿轮箱故障诊断方法。首先,构建基于循环卷积生成对抗网络的样本生成模型... 风机齿轮箱是风力涡轮传动系统中的关键部分,其故障发生随机、故障样本数量不足,严重影响故障诊断的准确性。针对此问题,提出一种基于循环卷积生成对抗网络的风机齿轮箱故障诊断方法。首先,构建基于循环卷积生成对抗网络的样本生成模型,利用卷积网络和循环网络作为生成器增强样本间的时间相关性;借助Wasserstein距离与梯度惩罚项改进目标函数,并通过博弈对抗机制优化生成器和判别器,提高模型的泛化能力。然后,结合真实样本和生成样本,设计基于堆叠去噪自编码器的故障诊断方法,实现齿轮箱的故障诊断。最后,利用风力涡轮传动系统数据集验证所提出的风机齿轮箱故障诊断方法的性能。结果显示,所提方法能够有效平衡故障样本数据集,进一步提高风机齿轮箱故障诊断的准确率。 展开更多
关键词 故障诊断 风机齿轮箱 生成对抗网络 循环卷积网络 样本生成
在线阅读 下载PDF
基于生成对抗网络的植物景观生成设计——以花境平面图生成为例
3
作者 冯璐 余辰雯 +1 位作者 孙雨婷 赵晶 《风景园林》 北大核心 2024年第9期59-68,共10页
【目的】植物景观设计需要科学性和技术性兼备。探索人工智能,特别是生成对抗网络(generative adversarial network,GAN)在植物景观设计中的应用,能够帮助设计师提高设计过程的效率。【方法】以花境平面图生成设计为例,建立了基于细致... 【目的】植物景观设计需要科学性和技术性兼备。探索人工智能,特别是生成对抗网络(generative adversarial network,GAN)在植物景观设计中的应用,能够帮助设计师提高设计过程的效率。【方法】以花境平面图生成设计为例,建立了基于细致筛选优化的植物平面数据集。数据集标注基于植物分类,考虑了植物的种类、搭配原则及空间布局规律。引入循环生成对抗网络(cycle generative adversarial network,CycleGAN)模型对数据集进行学习,实现花境平面设计的自动生成。【结果】CycleGAN模型在以花境为代表的植物景观设计中具有独特的优势,花境平面图生成模型能够准确识别条形场地边界,并在色彩再现方面表现出较高的精度和可识别性。生成平面图的空间布局中,色块大小、平面布局形态和位置展示了各种植物的空间分布特点,并能够复现部分潜在搭配组合,生成了符合美学和生态原则的设计方案。然而,模型在部分场地边框的准确识别和设计结果的多样性方面仍存在局限。【结论】证明了CycleGAN在植物景观设计领域的应用潜力,并为实践中的植物景观设计提供了创新和有效的解决方案。 展开更多
关键词 风景园林 植物景观设计 机器学习 神经网络 循环生成对抗网络 花境
在线阅读 下载PDF
基于生成对抗网络的多姿态人脸识别算法
4
作者 蒋文豪 《信息技术与信息化》 2024年第2期188-191,共4页
头部姿态角转换会造成人脸成像多姿态变化,人脸离散数据的高斯分布混乱,无法准确地反映人脸多姿态的任意性和连续性,存在识别效果差的问题。引入生成对抗网络理论,设计多姿态人脸识别算法。对获取到的不同角度人脸图像,实施多姿态人脸... 头部姿态角转换会造成人脸成像多姿态变化,人脸离散数据的高斯分布混乱,无法准确地反映人脸多姿态的任意性和连续性,存在识别效果差的问题。引入生成对抗网络理论,设计多姿态人脸识别算法。对获取到的不同角度人脸图像,实施多姿态人脸校正与旋转残差注意力计算,解决当前头部姿态估计方法对不同人脸兴趣区域不稳健的问题。设计生成对抗网络进行双路循环优化,在生成的对抗网络中,参考CASIA-Net网络结构,使用深层次网络结构,每一层都有一个3*3的卷积核。所提出的设计可以降低网络参数,增强网络的非线性度,实现高效的面部特征提取,构建人脸多姿态识别模型,并完成人脸识别。通过实验结果表明,所提算法针对多姿态人脸识别效果好,在人脸不同姿态变化过程中,识别率始终在97%以上,更适用于多姿态人脸识别。 展开更多
关键词 生成对抗网络 残差注意力 人脸识别 多姿态 循环优化 识别模型
在线阅读 下载PDF
基于循环生成对抗网络的超分辨率重建算法研究 被引量:8
5
作者 蔡文郁 张美燕 +1 位作者 吴岩 郭嘉豪 《电子与信息学报》 EI CSCD 北大核心 2022年第1期178-186,共9页
为了提高图像超分辨率重建的效果,该文将注意力机制引入多级残差网络(Multi-level Residual Attention Network,MRAN)作为CycleGAN的重建网络,提出了基于循环生成对抗网络(CycleGAN)的超分辨率重建模型MRA-GAN。MRA-GAN模型中重建网络... 为了提高图像超分辨率重建的效果,该文将注意力机制引入多级残差网络(Multi-level Residual Attention Network,MRAN)作为CycleGAN的重建网络,提出了基于循环生成对抗网络(CycleGAN)的超分辨率重建模型MRA-GAN。MRA-GAN模型中重建网络负责将低分辨率(LR)图像重建为高分辨率(HR)图像,退化网络负责将HR图像降采样为LR图像,LR判别器负责鉴别真实LR图像和通过退化网络降采样得到的LR图像,HR判别器负责鉴别真实HR图像和通过重建网络重建得到的HR图像,并且改进了CycleGAN原有的判别器判别方式和损失函数。实验结果验证了MRA-GAN模型与现有算法相比,在峰值信噪比(PSNR)和结构相似性(SSIM)等指标上都有所改进。 展开更多
关键词 图像超分辨重建 多级残差网络 循环生成对抗网络 峰值信噪比 结构化相似性
在线阅读 下载PDF
基于生成对抗网络的人脸年龄渐进合成算法
6
作者 杨晓雨 王爱侠 +1 位作者 杨钢 李晶皎 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第7期944-952,共9页
人脸年龄合成(face age synthesis,FAS)的目标是根据源人脸图像合成指定年龄人脸图像,同时保留人脸的个人特征和身份信息.针对年龄变换时无关特征容易改变和产生伪影鬼影的问题,提出一种基于生成对抗网络的人脸年龄渐进合成算法.采用基... 人脸年龄合成(face age synthesis,FAS)的目标是根据源人脸图像合成指定年龄人脸图像,同时保留人脸的个人特征和身份信息.针对年龄变换时无关特征容易改变和产生伪影鬼影的问题,提出一种基于生成对抗网络的人脸年龄渐进合成算法.采用基于门控循环单元的年龄编辑模块自适应地过滤或加入特征,并使用属性解耦模块在潜在空间进行对抗学习,通过生成器和判别器的对抗策略保证了真实自然的人脸合成,使用年龄分类约束拟合特定年龄分布,为了保证年龄无关属性的保留,还在生成对抗网络中引入了重建学习.在跨年龄名人数据集(cross-age celebrity dataset,CACD)下的实验结果表明,对比其他基于条件生成对抗网络的算法,提出的算法生成的人脸图像伪影失真有所减少,年龄显著性增强,具有较好的年龄准确性和较高的身份一致性. 展开更多
关键词 人脸年龄合成 生成对抗网络 属性解耦 潜在空间 门控循环单元 重建学习
在线阅读 下载PDF
基于改进生成对抗网络的图像风格迁移算法
7
作者 王圣雄 刘瑞安 燕达 《电子科技》 2024年第6期36-43,共8页
图像风格迁移是图像处理领域的研究热点,但目前风格迁移模型存在生成图像细节模糊、风格纹理的色彩效果较差以及模型参数过多等问题。文中提出了一种基于改进循环一致性生成对抗网络的图像风格迁移方法,通过加入Ghost卷积模块和反残差... 图像风格迁移是图像处理领域的研究热点,但目前风格迁移模型存在生成图像细节模糊、风格纹理的色彩效果较差以及模型参数过多等问题。文中提出了一种基于改进循环一致性生成对抗网络的图像风格迁移方法,通过加入Ghost卷积模块和反残差改进模块来优化生成器网络结构,以此降低模型参数量和计算成本。同时能增强网络的特征提取能力,在损失函数中加入内容风格损失项、颜色重建损失项和映射一致性损失项来改善模型的生成能力,提升生成图像质量。实验结果表明,所提改进方法具有较强的风格迁移能力,有效增强了生成图像的内容细节和风格纹理的色彩效果,显著提升了图像质量,模型性能也得到了改善。 展开更多
关键词 图像处理 图像风格迁移 生成对抗网络 cyclegan Ghost卷积 反残差模块 特征提取 颜色重建损失
在线阅读 下载PDF
基于改进CycleGAN网络的图像风格迁移技术研究
8
作者 吴建磊 杨慧炯 《信息技术与信息化》 2025年第2期79-82,共4页
针对CycleGAN网络进行图像风格迁移时生成图像存在随机噪音和风格纹理色彩效果较差的问题,文章提出了一种基于CycleGAN网络的改进型图像风格迁移方法,分别对生成器的网络结构和损失函数进行改进。网络结构方面,将多头注意力机制加入到... 针对CycleGAN网络进行图像风格迁移时生成图像存在随机噪音和风格纹理色彩效果较差的问题,文章提出了一种基于CycleGAN网络的改进型图像风格迁移方法,分别对生成器的网络结构和损失函数进行改进。网络结构方面,将多头注意力机制加入到生成器中编码器的原始卷积模块中。损失函数方面,在原有损失函数的基础上加入内容损失项和颜色重建损失项。实验结果表明,所提方法生成的图像色彩效果更佳、细节刻画更为丰富,有效避免了生成图像具有随机噪音的问题。并且生成图像的PSNR和SSIM分别提升了2.37%和12.05%。 展开更多
关键词 风格迁移 生成对抗网络 cyclegan 注意力机制 损失函数
在线阅读 下载PDF
基于注意力机制的循环一致性生成对抗网络
9
作者 周美丽 屈佳佳 《延安大学学报(自然科学版)》 2023年第1期14-19,共6页
针对循环一致性生成对抗网络(Cycle-GAN)在图像风格转换任务上出现的纹理细节处理得不好、背景颜色保留较差等问题,并且缩小在配对图像数据集和非配对图像数据集上训练结果的差异,提出一种基于注意力机制的循环一致性生成对抗网络,在生... 针对循环一致性生成对抗网络(Cycle-GAN)在图像风格转换任务上出现的纹理细节处理得不好、背景颜色保留较差等问题,并且缩小在配对图像数据集和非配对图像数据集上训练结果的差异,提出一种基于注意力机制的循环一致性生成对抗网络,在生成器网络中融入通道注意力机制(SE-Net),利用网络自主学习的方法得到每一个特征通道的重要程度,再分别赋予每个特征通道不一样的权重系数,以此来强调有重要特征的部分、抑制非重要特征的部分,使得不同特征和不同区域能够被生成器网络非均匀的处理。同时引入对比学习(CL),使网络能够学习到图像的更高层次的通用特征。实验结果表明,所提方法在horse2zebra数据集上取得了较好的结果。 展开更多
关键词 生成对抗网络 循环一致性生成对抗网络 通道注意力机制 对比学习
在线阅读 下载PDF
基于循环生成对抗网络的壁画色彩修复算法 被引量:3
10
作者 曹建芳 靳梦燕 +2 位作者 李朝霞 陈泽宇 马尚 《山东科技大学学报(自然科学版)》 CAS 北大核心 2023年第4期101-112,共12页
针对敦煌唐代壁画修复所面临的褪、变色以及修复后的壁画图像色彩存在假色和伪影的问题,提出基于循环生成对抗网络和多尺度融合协调注意力机制的壁画色彩修复算法。首先在循环一致性损失中添加同一映射损失,然后改进协调注意力机制,提... 针对敦煌唐代壁画修复所面临的褪、变色以及修复后的壁画图像色彩存在假色和伪影的问题,提出基于循环生成对抗网络和多尺度融合协调注意力机制的壁画色彩修复算法。首先在循环一致性损失中添加同一映射损失,然后改进协调注意力机制,提出多尺度融合的协调注意力机制,最后在生成器中引入多尺度融合的协调注意力机制,对图像进行卷积核大小为1×1、3×3、5×5、7×7的多尺度卷积运算,提高生成图像的协调性。实验结果表明,与CycleGAN、WGAN等经典算法相比,本文算法在构造的壁画数据集上精度更高,可以在不依赖专家知识的情况下修复褪色壁画图像的颜色。 展开更多
关键词 循环生成对抗网络 风格迁移 壁画色彩修复 同一映射损失 协调注意力机制
在线阅读 下载PDF
基于条件深度循环生成对抗网络和动作探索的行星轮轴承剩余寿命预测 被引量:7
11
作者 于军 刘可 +2 位作者 郭帅 于广滨 郭振宇 《兵工学报》 EI CAS CSCD 北大核心 2020年第11期2170-2178,共9页
为解决小样本和变工况下行星轮轴承剩余寿命预测准确率低的问题,提出一种基于条件深度循环生成对抗网络(C-DRGAN)和动作探索(AD)的行星轮轴承剩余寿命预测方法。将门控循环单元神经网络与条件生成对抗网络相结合,构建C-DRGAN,从非静态... 为解决小样本和变工况下行星轮轴承剩余寿命预测准确率低的问题,提出一种基于条件深度循环生成对抗网络(C-DRGAN)和动作探索(AD)的行星轮轴承剩余寿命预测方法。将门控循环单元神经网络与条件生成对抗网络相结合,构建C-DRGAN,从非静态和非线性信号中提取故障特征,实现小样本和变工况下行星轮轴承的剩余寿命预测;采用基于AD的训练算法训练C-DRGAN,提高收敛速度,降低训练时间;根据训练后的C-DRGAN,利用多元线性回归分类器预测测试样本中行星轮轴承的剩余寿命。通过行星轮轴承加速疲劳寿命试验验证该方法的有效性。结果表明,该方法具有较强的非静态和非线性信号处理能力,并能在小样本情况下取得出色的行星轮轴承剩余寿命预测效果。 展开更多
关键词 行星轮轴承 剩余寿命预测 门控循环单元神经网络 条件生成对抗网络 动作探索 小样本
在线阅读 下载PDF
基于循环生成式对抗网络实现停车场时空数据的修复 被引量:1
12
作者 孙玉强 彭磊 李慧云 《集成技术》 2018年第6期9-18,共10页
停车诱导技术在一定程度上缓解了高峰时段无序停车问题,并减少了司机寻找车位的时间,但停车诱导系统对实时数据和历史数据有较高的依赖。如果缺少相应数据,那么诱导系统的准确性将大打折扣。针对这一问题,该文通过挖掘停车场周围的空间... 停车诱导技术在一定程度上缓解了高峰时段无序停车问题,并减少了司机寻找车位的时间,但停车诱导系统对实时数据和历史数据有较高的依赖。如果缺少相应数据,那么诱导系统的准确性将大打折扣。针对这一问题,该文通过挖掘停车场周围的空间数据,提出了一种停车场空间相似度度量,并计算出停车场空间相似情况下其数据的相似条件概率。当条件概率足够大时,以已知数据为学习样本,使用循环生成式对抗网络获得修复数据。实验结果表明,当停车场空间具有较高空间相似度时,其数据同样有大概率的相似性,使用循环生成式对抗网络生成的数据与真实数据具有相同的分布。该文提出的方法可在短时间内生成大量的合理数据,实现停车场数据的修复,提高诱导系统的可靠性。 展开更多
关键词 停车诱导系统 停车数据修复 数据挖掘 时空相似性 循环生成对抗网络
在线阅读 下载PDF
基于双专用注意力机制引导的循环生成对抗网络 被引量:1
13
作者 劳俊明 叶武剑 +1 位作者 刘怡俊 袁凯奕 《液晶与显示》 CAS CSCD 北大核心 2022年第6期746-757,共12页
现有基于循环生成对抗网络的图像生成方法通过引入独立通用的注意力模块,在无匹配图像转换任务中取得了较好的效果,但同时也增加了模型复杂度与训练时间,而且难以关注到图中关键区域的所有细节,图像生成效果仍有提升的空间。针对上述问... 现有基于循环生成对抗网络的图像生成方法通过引入独立通用的注意力模块,在无匹配图像转换任务中取得了较好的效果,但同时也增加了模型复杂度与训练时间,而且难以关注到图中关键区域的所有细节,图像生成效果仍有提升的空间。针对上述问题,提出一种基于双专用注意力机制引导的循环生成对抗网络(Dual-SAG-CycleGAN),分别对生成器和判别器采用不同的注意力机制进行引导。首先,提出一种名为SAG(Special Attention-mechanism Guided)的专用注意力模块来引导生成器工作,在提升生成图像质量的同时降低网络的复杂度;然后,对判别器采用基于CAM(Class Activation Mapping)的专用注意力机制引导模块,抑制生成器生成无关的噪声;最后,提出背景掩码的循环一致性损失函数,引导生成器生成更加精准的掩码图,更好地辅助图像转换。实验证明,本文方法与现有同类模型相比,网络模型参数量降低近32.8%,训练速度快34.5%,KID与FID最低分别可达1.13和57.54,拥有更高的成像质量。 展开更多
关键词 生成对抗网络 无匹配图像转换 专用注意力机制 循环一致性损失 图像生成
在线阅读 下载PDF
基于双循环生成对抗网络和Dense-Net的木材缺陷检测方法 被引量:3
14
作者 解晨辉 杨博凯 李荣荣 《林业工程学报》 CSCD 北大核心 2023年第4期129-136,共8页
木材缺陷智能检测技术可以有效降低人工误检带来的经济损失,对提高木材加工智能化水平具有重要意义。提出了一种木材缺陷智能检测算法,通过双循环生成对抗网络(double least generative adversarial networks,DLGAN)及密集卷积网络(Dens... 木材缺陷智能检测技术可以有效降低人工误检带来的经济损失,对提高木材加工智能化水平具有重要意义。提出了一种木材缺陷智能检测算法,通过双循环生成对抗网络(double least generative adversarial networks,DLGAN)及密集卷积网络(Dense-Net)来检测色差、虫眼、裂纹、节子和伤疤等5种木材常见缺陷。首先,使用DLGAN技术扩充数据集,提高数据集的多样性和数量,缓解了因训练数据不足而导致的过拟合问题;其次,基于Dense-Net的特点,采用密集的卷积块序列提高对微弱特征的提取和学习能力,以便更好地检测木材缺陷。试验结果表明,相比VGG16、Inception-v2、ResNet 3种经典卷积神经网络,基于DLGAN增广数据集训练的Dense-Net模型有效提高了木材缺陷检测模型的性能,平均准确率达到92.7%,在只使用少量训练数据的情况下模型依然具有良好的图像生成能力和训练鲁棒性。 展开更多
关键词 木材缺陷检测 循环生成对抗网络 Dense-Net 神经网络 智能制造
在线阅读 下载PDF
基于循环条件生成对抗网络的数据生成方法 被引量:2
15
作者 孔洁 《火力与指挥控制》 CSCD 北大核心 2021年第11期134-139,143,共7页
针对军事领域数据采集困难以及数据生成人工依赖性强、成本高、效率低等问题,在生成对抗网络(GAN)框架的基础上,构建长短期循环神经网络(LSTM-RNN)代替生成对抗网络中的生成器和鉴别器,以最大平均差异和最大似然估计作为指标构建数据生... 针对军事领域数据采集困难以及数据生成人工依赖性强、成本高、效率低等问题,在生成对抗网络(GAN)框架的基础上,构建长短期循环神经网络(LSTM-RNN)代替生成对抗网络中的生成器和鉴别器,以最大平均差异和最大似然估计作为指标构建数据生成评估模型,提出一种可生成数据序列的循环条件生成对抗网络(RCGAN)。该方法完全依靠数据驱动,无需经过精心设计的建模过程,便可生成与真实数据相一致的数据。通过基于实际数据的仿真实验,验证了该方法在数据相似度、估计误差、抗干扰性以及泛化性方面的优势。 展开更多
关键词 生成对抗网络 长短期记忆网络 循环神经网络 数据生成 军事数据
在线阅读 下载PDF
基于改进循环生成对抗神经网络的语音增强 被引量:2
16
作者 徐珑婷 田娩鑫 魏郅林 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第5期70-76,共7页
为克服基于生成对抗网络的语音增强技术存在成对语音样本缺乏的问题,提出改进的循环一致性生成对抗网络(CycleGAN)的不成对数据生成模型。通过引入2-1-2D CNN生成器和PatchGAN鉴别器,使改进的CycleGAN-2-1-2D模型能更有效地学习语音样... 为克服基于生成对抗网络的语音增强技术存在成对语音样本缺乏的问题,提出改进的循环一致性生成对抗网络(CycleGAN)的不成对数据生成模型。通过引入2-1-2D CNN生成器和PatchGAN鉴别器,使改进的CycleGAN-2-1-2D模型能更有效地学习语音样本多维度的特征,并大大缩短了训练时长。选取LibriTTS语料库中的部分纯净语音作为训练集A,从语料库中选取其他样本加3种类型的噪声作为训练集B,训练集A和训练集B作为CycleGAN-2-1-2D模型的输入参数。设置CycleGAN-2D和NMF(nonnegative matrix factorization)的语音增强模型作为CycleGAN-2-1-2D模型的对照试验,通过仿真试验对3种模型生成的语音质量进行评估。研究数据表明:相较于NMF模型,CycleGAN-2-1-2D模型生成的语音质量有了较大的提升;相较于CycleGAN-2D模型,CycleGAN-2-1-2D模型对女声的增强效果有明显提升。 展开更多
关键词 语音增强 深度神经网络 循环生成对抗网络 非平行数据
在线阅读 下载PDF
基于改进型循环生成对抗网络的雾天图像生成算法
17
作者 喻骏 王晓峰 +3 位作者 孙志恒 孙贾梦 秦浩 苏盈盈 《重庆科技学院学报(自然科学版)》 CAS 2022年第4期68-74,共7页
为了优化图像采集效果,通过改进循环生成对抗网络的方法设计雾天图像生成算法。以立体视觉KITTI2015数据集为例,对其中图像数据进行雾天场景转化。首先,为提高算法的准确性,基于图像退化模型对采集的真实雾天图像进行去动态模糊处理;然... 为了优化图像采集效果,通过改进循环生成对抗网络的方法设计雾天图像生成算法。以立体视觉KITTI2015数据集为例,对其中图像数据进行雾天场景转化。首先,为提高算法的准确性,基于图像退化模型对采集的真实雾天图像进行去动态模糊处理;然后,针对反卷积过程中产生的棋盘效应,对生成器网络中的上采样模块加以改进,利用插值上采样与卷积组合模块提高雾天图像的生成效果;最后对循环一致性损失训练过程中的参数进行了调整,从而获得最优的雾天图像生成模型。实验结果表明,所得雾天图像的棋盘效应得以削弱,且去雾后能准确地再现原始图像信息。 展开更多
关键词 循环生成对抗网络 雾天图像 KITTI2015数据集 棋盘效应
在线阅读 下载PDF
基于生成对抗网络的无线电数据增扩与分类 被引量:1
18
作者 张凤荔 周志远 +2 位作者 王瑞锦 黄鑫 韩英军 《信息安全学报》 CSCD 2023年第5期47-60,共14页
相较于传统的无线电数据特征提取方法,深度学习具有高效灵活的特点,其可以有效提高调制数据识别的性能。然而在实践中,收集大量可靠的无线电调制样本数据有时代价是昂贵和困难的,这在很大程度上限制了深度学习模型的性能。本文提出了基... 相较于传统的无线电数据特征提取方法,深度学习具有高效灵活的特点,其可以有效提高调制数据识别的性能。然而在实践中,收集大量可靠的无线电调制样本数据有时代价是昂贵和困难的,这在很大程度上限制了深度学习模型的性能。本文提出了基于生成对抗网络(Generative Adversarial Networks,GAN)的无线电调制数据增扩模型RMAbGAN(Radio Modulation data Augmentation based on Generative Adversarial Networks),该模型通过挖掘不同信噪比与调制方式下的无线电调制数据特征差异,生成符合调制方式与信噪比特点的无线电调制数据,模型中的生成器部分捕获无线电调制数据分布特征,辨识器部分优化生成器性能,两者相互博弈性能不断提升;在此基础上,对无线电数据采样特点与无线电数据传统增强方法进行深度分析与研究,发现了无线电调制数据蕴含的空域特征与时序特征,设计出了能深刻捕获无线电数据空域特征与时序特征的无线电数据分类模型AMCST(Automatic Modulation Classification based Spatial and Temporal feature)。通过大量的对比实验,表明相较于基于旋转变换的无线电调制数据增扩模型,RMAbGAN模型在无线电调制数据增扩方面更具有鲁棒性和泛化能力,可以实现更高的调制分类准确率。此外,相较基于长短期记忆网络(Long Short-Term Memory,LSTM)的调制分类模型、基于残差网络(Residual Networks,ResNet)的调制分类模型等传统模型,AMCST模型在调制数据分类方面更具有稳定性和可用性,同时也具有更高的分类准确率。 展开更多
关键词 无线电调制数据增扩 无线电调制数据分类 生成对抗网络 卷积神经网络 循环神经网络
在线阅读 下载PDF
基于多尺度梯度的轻量级生成对抗网络 被引量:2
19
作者 孙红 赵迎志 《电子科技》 2023年第7期32-38,共7页
随着生成对抗网络研究的推进,网络模型的计算量急剧增加,其自身的训练不稳定问题依然存在,生成图像的质量也有待提升。为解决以上问题,文中提出一种轻量级生成对抗网络模型,引入多尺度梯度结构解决训练不稳定的问题。通过融合自注意力... 随着生成对抗网络研究的推进,网络模型的计算量急剧增加,其自身的训练不稳定问题依然存在,生成图像的质量也有待提升。为解决以上问题,文中提出一种轻量级生成对抗网络模型,引入多尺度梯度结构解决训练不稳定的问题。通过融合自注意力机制和动态卷积的思想,利用循环模块和图像增强模块,在保持较少参数的前提下提高模型的学习能力。对文中所提算法进行验证,实验结果表明该算法在CelebA数据集上的IS(Inception Score)值为2.75,FID(Fréchet Inception Distance)值为70.1,在LSUN数据集上的IS值为2.61,FID值为73.2,相比SAGAN、DCGAN等经典模型性有所提高,验证了该算法可行性和性能。 展开更多
关键词 多尺度梯度 动态卷积 循环 半注意力机制 注意力稀疏化 卷积网络 深度学习 图像生成 生成对抗网络
在线阅读 下载PDF
融合生成对抗网络与时间卷积网络的普通话情感识别
20
作者 李海烽 张雪英 +2 位作者 段淑斐 贾海蓉 Huizhi Liang 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第9期1865-1875,共11页
为了探究声学与发音学转换对普通话情感识别的影响,提出融合声学与发音特征转换的情感识别系统.根据人体发音机制,录制普通话多模态音视频情感数据库.设计双向映射生成对抗网络(Bi-MGAN)来解决双模态间的特征转换问题,定义生成器损失函... 为了探究声学与发音学转换对普通话情感识别的影响,提出融合声学与发音特征转换的情感识别系统.根据人体发音机制,录制普通话多模态音视频情感数据库.设计双向映射生成对抗网络(Bi-MGAN)来解决双模态间的特征转换问题,定义生成器损失函数和映射损失函数来优化网络.搭建基于特征-维度注意力机制的残差时间卷积网络(ResTCN-FDA),利用注意力机制自适应地为不同种类特征和不同维度通道赋予不同的权重.实验结果表明,Bi-MGAN在正向和反向映射任务中的转换精度均优于主流的转换网络算法;ResTCN-FDA在给定情感数据集上的评价指标远高于传统的情感识别算法;真实特征融合映射特征使得情感被正确识别的准确率显著提升,证明了映射对普通话情感识别的积极作用. 展开更多
关键词 循环生成对抗网络 情感识别 声学与发音学转换 时间卷积网络 注意力机制
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部