期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
融合多粒度信息的用户画像生成方法 被引量:5
1
作者 邵一博 秦玉华 +2 位作者 崔永军 高宝勇 赵彪 《计算机应用研究》 CSCD 北大核心 2024年第2期401-407,共7页
现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该... 现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。 展开更多
关键词 用户画像 多粒度信息融合 特征提取 双向控制循环单元
在线阅读 下载PDF
融入语言模型和注意力机制的临床电子病历命名实体识别 被引量:30
2
作者 唐国强 高大启 +2 位作者 阮彤 叶琪 王祺 《计算机科学》 CSCD 北大核心 2020年第3期211-216,共6页
临床电子病历命名实体识别(Clinical Named Entity Recognition,CNER)的主要任务是对给定的一组电子病历文档进行识别并抽取出与医学临床相关的命名实体,然后将它们归类到预先定义好的类别中,如疾病、症状、检查等实体。命名实体识别任... 临床电子病历命名实体识别(Clinical Named Entity Recognition,CNER)的主要任务是对给定的一组电子病历文档进行识别并抽取出与医学临床相关的命名实体,然后将它们归类到预先定义好的类别中,如疾病、症状、检查等实体。命名实体识别任务通常被看作一个序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了非常好的效果。但其中大部分方法未能有效利用大量的未标注数据;并且目前使用的特征相对简单,未能深入捕捉病历文本自身的特征。针对这两个问题,文中提出一种融入语言模型和注意力机制的深度学习方法。该方法首先从未标注的临床医疗数据中训练字符向量和语言模型,然后利用标注数据来训练标注模型。具体地,将句子的向量表示送入一个双向门控循环网络(Bidirectional Gated Recurrent Units,BiGRU)和预训练好的语言模型,并将两部分的输出进行拼接。之后,将前一层的拼接向量输入另一个BiGRU和多头注意力(Multi-head Attention)模块。最后,将BiGRU和多头注意力模块的输出进行拼接并输入条件随机场(Conditional Randoin Field,CRF),预测全局最优的标签序列。通过利用语言模型特征和多头注意力机制,该方法在CCKS-2017 Shared Task2标准数据集上取得了良好的结果(F1值为91.34%)。 展开更多
关键词 多头注意力 语言模型 临床医学命名实体识别 深度神经网络 循环控制单元
在线阅读 下载PDF
基于组合模型的城市轨道站点短时客流分类预测 被引量:12
3
作者 王金水 欧雪雯 +1 位作者 陈俊岩 唐郑熠 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第6期2004-2012,共9页
轨道交通客流预测是轨道交通线网规划的重要内容,是确定轨道交通系统的线网规模、设置轨道站点及布设线路基础。不同类型的轨道站点在城市中的功能定位和布局要求等方面均存在差异,进而导致站点的进出客流量呈现显著的时空分布不均衡性... 轨道交通客流预测是轨道交通线网规划的重要内容,是确定轨道交通系统的线网规模、设置轨道站点及布设线路基础。不同类型的轨道站点在城市中的功能定位和布局要求等方面均存在差异,进而导致站点的进出客流量呈现显著的时空分布不均衡性。为了挖掘各类型站点的客流变化规律,将站点自身特征和周边环境特征组成向量因子,运用K-means聚类方法对站点进行分类。在此基础上,将影响乘客出行的多源数据作为输入特征,分别构建了随机森林(RF)模型、门控制循环单元(GRU)模型以及RF-GRU组合模型,从而进行站点短时客流分类预测。利用杭州地铁站自动检票系统(AFC)采集的刷卡客流数据,对所构建的预测模型的有效性进行检验。研究结果表明:利用7个刻画站点自身特征和周边环境特征的参数作为聚类因子,并结合站点客流时间分布数据,可将杭州市地铁站点分为就业导向型车站、职住混合型车站和住宅偏远型车站;采用平均绝对误差以及均方根误差作为评价指标,参数化模型(ARIMA),非参数化模型(SVR),深度学习模型(LSTM,GRU,SAEs和GCN),组合模型(DCRNN,STGCN,STHGCN和DSTHGCN)的预测误差依次降低,其中RF-GRU组合模型的预测精度优于其他的组合模型;对站点进行分类之后,单一模型和组合模型预测结果的精度均有提高。 展开更多
关键词 智能交通 短时客流量预测 组合预测模型 多源数据 随机森林 控制循环单元
在线阅读 下载PDF
基于数据处理与若干群体算法优化的GRU/LSTM水质时间序列预测 被引量:9
4
作者 杨坪宏 胡奥 +1 位作者 崔东文 杨杰 《水资源与水工程学报》 CSCD 北大核心 2023年第4期45-53,共9页
为提高水质时间序列预测精度,提出一种基于小波包变换(WPT)和变色龙优化算法(CSA)、猎豹优化(CO)算法和山瞪羚优化(MGO)算法的优化门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)的预测模型。首先利用WPT对pH值、DO、COD_(Mn)、NH_(3... 为提高水质时间序列预测精度,提出一种基于小波包变换(WPT)和变色龙优化算法(CSA)、猎豹优化(CO)算法和山瞪羚优化(MGO)算法的优化门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)的预测模型。首先利用WPT对pH值、DO、COD_(Mn)、NH_(3)-N时间序列进行平稳化处理,得到若干个规律性较强的子序列分量;其次简要介绍了CSA、CO、MGO算法原理,利用CSA、CO、MGO分别寻优GRU、LSTM超参数,建立WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU、WPT-CSA-LSTM、WPT-CO-LSTM、WPT-MGO-LSTM模型;最后利用所建立的模型对pH值及DO、COD_(Mn)、NH_(3)-N浓度各分量进行预测和重构,并建立WPT-GRU、WPT-LSTM和WPT-CSA-SVM、WPT-CO-SVM、WPT-MGO-SVM模型作对比分析模型,以云南省昆明市观音山断面为例,通过pH值及DO、COD_(Mn)、NH_(3)-N浓度预测对模型进行了验证。结果表明:WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU、WPT-CSA-LSTM、WPT-CO-LSTM、WPT-MGO-LSTM模型对实例pH值及DO、COD_(Mn)、NH_(3)-N浓度的预测精度优于其他对比模型,具有较好的预测效果,其中尤以WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU模型的预测精度最高;CSA、CO、MGO能有效调优GRU、LSTM超参数,显著提高GRU、LSTM预测性能;所构建的6种模型预测精度高且计算规模小,是有效的水质时间序列预测模型,可为相关水质预测研究提供参考。 展开更多
关键词 水质预测 门限循环控制单元 长短期记忆神经网络 小波包变换 变色龙优化算法 猎豹优化算法 山瞪羚优化算法
在线阅读 下载PDF
基于深度学习神经网络超参数优化的入库径流预测方法研究——以云南省暮底河水库为例 被引量:11
5
作者 陈金红 崔东文 《三峡大学学报(自然科学版)》 CAS 2023年第4期25-32,共8页
准确的入库日径流预测在水库优化调度中发挥着重要作用.为提高日径流预测精度,提出了基于小波包变换(WPT)并结合了白鲨优化(WSO)算法的门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)、卷积神经网络(CNN)日径流时间序列预测模型,以... 准确的入库日径流预测在水库优化调度中发挥着重要作用.为提高日径流预测精度,提出了基于小波包变换(WPT)并结合了白鲨优化(WSO)算法的门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)、卷积神经网络(CNN)日径流时间序列预测模型,以云南省暮底河水库2018—2020年入库日径流时间序列预测为例对各模型进行检验.首先利用WPT将日径流时序数据分解为若干子序列分量;其次引入WSO对GRU、LSTM、CNN超参数进行调优,建立WPT-WSO-GRU、WPT-WSO-LSTM、WPT-WSO-CNN模型;最后利用所建立的模型对各子序列分量进行预测及加和重构,并构建WPT-GRU、WPT-LSTM、WPT-CNN及基于BP神经网络的WPT-WSO-BP、WPT-BP作对比分析模型.结果表明:WPT-WSO-GRU、WPT-WSO-LSTM、WPT-WSO-CNN模型对实例日径流预测的平均绝对百分比误差EMAP分别为3.67%、5.52%、8.98%,平均绝对误差EMA分别为0.120、0.155、0.329 m^(3)/s,确定性系数DC分别为0.996 2、0.995 7、0.974 0 s,预报合格率RQ分别为98.1%、96.4%、89.6%,预测效果优于对应未经WSO调优的WPT-GRU、WPT-LSTM、WPT-CNN模型及WPT-WSO-BP、WPT-BP模型,其中WPT-WSO-GRU模型具有更高的预测精度和更好的泛化能力,WPT-WSO-LSTM模型次之.WSO能有效调优GRU、LSTM、CNN超参数,提高GRU、LSTM、CNN预测性能.WPT-WSO-GRU、WPT-WSO-LSTM模型在入库日径流时间序列预测研究中具有较好的应用前景. 展开更多
关键词 日径流预测 门限循环控制单元 长短期记忆神经网络 卷积神经网络 白鲨优化算法 小波包变换
在线阅读 下载PDF
融合残差网络的CR-BiGRU入侵检测模型 被引量:11
6
作者 沈记全 魏坤 《吉林大学学报(理学版)》 CAS 北大核心 2023年第2期353-361,共9页
针对当前网络攻击的复杂性和多样性,传统模型提取流量特征不足且准确率较低的问题,提出一种融合残差网络改进的CR-BiGRU混合模型的网络入侵检测方法.首先将数据集进行归一化以及独热编码处理,然后利用基于残差网络的卷积神经网络提取空... 针对当前网络攻击的复杂性和多样性,传统模型提取流量特征不足且准确率较低的问题,提出一种融合残差网络改进的CR-BiGRU混合模型的网络入侵检测方法.首先将数据集进行归一化以及独热编码处理,然后利用基于残差网络的卷积神经网络提取空间特征,最后使用双向门控神经网络提取时间特征,完成模型的训练并实现异常网络的入侵检测.为表明模型的适用性,基于数据集NSL-KDD和UNSW-NB15进行对比分析实验,结果表明,该方法基于上述数据集准确率分别达99.40%和83.79%,明显优于经典网络入侵检测算法,能有效提升检测网络入侵的精度,从而更好保证网络数据的通信安全. 展开更多
关键词 入侵检测 深度学习 网络流量 卷积神经网络 双向控制循环单元
在线阅读 下载PDF
融入自注意力机制的深度学习情感分析方法 被引量:19
7
作者 胡艳丽 童谭骞 +1 位作者 张啸宇 彭娟 《计算机科学》 CSCD 北大核心 2022年第1期252-258,共7页
文本情感极性分析是自然语言处理的热点领域,近年来基于中文语料的情感分析方法受到了学术界的广泛关注。目前大部分基于词向量的循环神经网络与卷积神经网络模型对于文本特征的提取和保留能力不足,为此文中引入了多层自注意力机制,提... 文本情感极性分析是自然语言处理的热点领域,近年来基于中文语料的情感分析方法受到了学术界的广泛关注。目前大部分基于词向量的循环神经网络与卷积神经网络模型对于文本特征的提取和保留能力不足,为此文中引入了多层自注意力机制,提出了一种结合双向门控循环单元(BGRU)和多粒度卷积神经网络的中文情感极性分析方法。该方法首先使用BGRU获取文本的序列化特征信息,然后使用自注意力机制进行初步特征筛选,将处理后的特征信息导入含有不同卷积核的卷积神经网络;再使用自注意力机制对获得的局部特征进行动态权重的调整,注重关键特征的抽取;最后经Softmax获得文本情感极性。实验结果证明,模型在两种中文语料数据集上都体现了较好的分析处理性能,其中在ChineseNLPcorpus的online;hopping;0;ats数据集上取得了92.94%的情感分类准确性,在中科院谭松波学者整理的酒店评论数据集上取得了92.75%的情感分类准确度,相比目前的主流方法,其性能均有显著的提升。 展开更多
关键词 情感分析 自注意力机制 双向门控制循环单元 多粒度卷积神经网络
在线阅读 下载PDF
改进EEMD-GRU混合模型在径流预报中的应用 被引量:8
8
作者 刘扬 王立虎 +1 位作者 杨礼波 刘雪梅 《智能系统学报》 CSCD 北大核心 2022年第3期480-487,共8页
为解决径流预测模型存在的预测精确度低、稳定性差、延时高等问题,结合门控制循环单元神经网络(gated recurrent unit,GRU),集合经验模态分解(ensemble empirical mode decomposition,EEMD)的各自优点,提出一种基于改进EEMD方法的深度... 为解决径流预测模型存在的预测精确度低、稳定性差、延时高等问题,结合门控制循环单元神经网络(gated recurrent unit,GRU),集合经验模态分解(ensemble empirical mode decomposition,EEMD)的各自优点,提出一种基于改进EEMD方法的深度学习模型(EEMD-GRU)。该模型首先以智能算法对径流信号进行边界拓延,以解决EEMD边界效应。然后利用改进EEMD方法将径流信号分解为若干稳态分量,将各分量作为GRU模型的输入并对其进行预测。实验结果表明,与结合了经验模态分解的支持向量回归模型相比,并行EEMDGRU径流预测模型的预测精准度、可信度和效率分别提高82.50%、144.67%和95.49%。基于EEMD-GRU的最优运算结果表明,该方法可进一步减少区域防洪的经济损失,提高灾害监管的工作效率。 展开更多
关键词 径流预报 集合经验模态分解 深度学习 控制循环单元神经网络 并行计算 混合模型 时序预测 工程应用
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部