The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electro...The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.展开更多
The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is differe...The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is different from that in aqueous solution remarkably. With the increase of scan cycle, the oxidation potential shifts positively and the reduction potential shifts negatively, i.e., the redox potential difference increases. H+ apparent concentration affects the aniline polymerization evidently. When H+ concentration is lower than 0.08 mol/L, the electro-polymerization of aniline is difficult. With the increase of H+ concentration, the polymerization current of aniline increases gradually. Only when H+ concentration is high enough(0.5 mol/L), aniline can be well electro-polymerized. Moreover, under the same condition, the aniline polymerization current in W/O microemulsion is higher than that in aqueous solution. The scanning electron microscopy image shows that the deposited polyaniline(PANI) has uniform fiber morphology with diameter of about 100 nm. Further study result suggests that the electrochemical activity of the PANI in HCl is similar to that of the PANI prepared in aqueous solution.展开更多
基金Project(52074084)supported by the National Natural Science Foundation of China。
文摘The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.
基金Projects(51071067,21271069,20673036,J1210040,50473022) supported by National Natural Science Foundation of ChinaProject(2013GK3015) supported by the Science and Technology Program of Hunan Province,China
文摘The electro-polymerization behavior of aniline in reverse(W/O) microemulsion was investigated. The experiment results show that the cyclic voltammetry polymerization behavior of aniline in W/O microemulsion is different from that in aqueous solution remarkably. With the increase of scan cycle, the oxidation potential shifts positively and the reduction potential shifts negatively, i.e., the redox potential difference increases. H+ apparent concentration affects the aniline polymerization evidently. When H+ concentration is lower than 0.08 mol/L, the electro-polymerization of aniline is difficult. With the increase of H+ concentration, the polymerization current of aniline increases gradually. Only when H+ concentration is high enough(0.5 mol/L), aniline can be well electro-polymerized. Moreover, under the same condition, the aniline polymerization current in W/O microemulsion is higher than that in aqueous solution. The scanning electron microscopy image shows that the deposited polyaniline(PANI) has uniform fiber morphology with diameter of about 100 nm. Further study result suggests that the electrochemical activity of the PANI in HCl is similar to that of the PANI prepared in aqueous solution.