期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
再生混凝土梁长期受荷时随变形计算方法研究 被引量:5
1
作者 白国良 秦朝刚 +2 位作者 张玉 刘超 韩玉岩 《土木工程学报》 EI CSCD 北大核心 2016年第12期1-8,共8页
由于再生混凝土收缩徐变效应大,导致长期荷载作用下,再生混凝土梁附加变形较大。文中以不同再生粗骨料取代率的再生混凝土梁长期受荷变形性能的试验研究为依据,研究其长期变形计算方法。通过考虑龄期的有效弹性模量法,将再生混凝土徐变... 由于再生混凝土收缩徐变效应大,导致长期荷载作用下,再生混凝土梁附加变形较大。文中以不同再生粗骨料取代率的再生混凝土梁长期受荷变形性能的试验研究为依据,研究其长期变形计算方法。通过考虑龄期的有效弹性模量法,将再生混凝土徐变系数引入梁截面附加曲率的计算,基于虚功原理给出长期荷载作用的时随变形计算公式;考虑再生粗骨料的二相性,通过普通混凝土的徐变收缩计算式,给出考虑附着水泥砂浆影响的再生混凝土徐变收缩调整系数;将其计算结果代入三种典型普通混凝土徐变收缩模型,得到再生混凝土徐变收缩模型,并通过时随变形计算公式计算再生混凝土梁长期荷载下的跨中变形值、跨中和加载点的附加变形值,与试验结果吻合较好。 展开更多
关键词 再生混凝土梁 徐变收缩模型 徐变收缩调整系数 时随变形计算方法
在线阅读 下载PDF
Health monitoring and comparative analysis of time-dependent effect using different prediction models for self-anchored suspension bridge with extra-wide concrete girder 被引量:1
2
作者 ZHOU Guang-pan LI Ai-qun +1 位作者 LI Jian-hui DUAN Mao-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2025-2039,共15页
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens... The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder. 展开更多
关键词 self-anchored suspension bridge extra-wide concrete girder health monitoring concrete shrinkage and creep prediction model ambient temperature change safety evaluation
在线阅读 下载PDF
Coupling model for calculating prestress loss caused by relaxation loss,shrinkage,and creep of concrete
3
作者 曹国辉 胡佳星 张锴 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期470-478,共9页
The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experime... The calculation model for the relaxation loss of concrete mentioned in the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTG D62—2004) was modified according to experimental data. Time-varying relaxation loss was considered in the new model. Moreover, prestressed reinforcement with varying lengths(caused by the shrinkage and creep of concrete) might influence the final values and the time-varying function of the forecast relaxation loss. Hence, the effects of concrete shrinkage and creep were considered when calculating prestress loss, which reflected the coupling relation between these effects and relaxation loss in concrete. Hence, the forecast relaxation loss of prestressed reinforcement under the effects of different initial stress levels at any time point can be calculated using the modified model. To simplify the calculation, the integral expression of the model can be changed into an algebraic equation. The accuracy of the result is related to the division of the periods within the ending time of deriving the final value of the relaxation loss of prestressed reinforcement. When the time division is reasonable, result accuracy is high. The modified model works excellently according to the comparison of the test results. The calculation result of the modified model mainly reflects the prestress loss values of prestressed reinforcement at each time point, which confirms that adopting the finding in practical applications is reasonable. 展开更多
关键词 PRESTRESS relaxation loss shrinkage and creep theoretical analysis calculation model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部