鉴于传统径基函数网络(radial basis function network,简称RBFN)构造策略的不足,提出了基于偏最小二乘法(partial least squares,简称PLS)和遗传算法(genetic algorithms,简称GAs)的RBFN构造策略和一种更有效的径基宽度取值方法.在这...鉴于传统径基函数网络(radial basis function network,简称RBFN)构造策略的不足,提出了基于偏最小二乘法(partial least squares,简称PLS)和遗传算法(genetic algorithms,简称GAs)的RBFN构造策略和一种更有效的径基宽度取值方法.在这个集成构造策略中,PLS克服了K-Means算法求取径基易陷入局部最优的弊病,并使合成径基比由正交算法获取的径基更具代表性;而所提出的径基宽度取值方法和GAs则为网络性能和结构的实质性改善与优化提供了保障.实验证实了基于PLS和GAs的RBFN构造策略及所提出的径基宽度取值方法的优越性、可靠性和有效性.展开更多
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T...To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ...A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.展开更多
A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifyi...A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifying its yaw angle to determine his vision range and the court situation of the sportsman within his vision range can be further learned. In basketball match videos characterized by cluttered background, fast motion of the sportsmen and low resolution of their head images, and the covariance descriptor, were adopted to fuse multiple visual features of the head region, which can be seen as a point on the Riemannian manifold and then mapped to the tangent space. Then, the classification of head yaw angle was directly completed in this space through the trained multiclass LogitBoost. In order to describe the court situation of all sportsmen within the ball carrier’s vision range, artificial potential field (APF)-based information was introduced. Finally, the behavior of the ball carrier—shooting, passing and dribbling, was predicted using radial basis function (RBF) neural network as the classifier. Experimental results show that the average prediction accuracy of the proposed method can reach 80% on the video recorded in basketball matches, which validates its effectiveness.展开更多
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite...To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.展开更多
文摘鉴于传统径基函数网络(radial basis function network,简称RBFN)构造策略的不足,提出了基于偏最小二乘法(partial least squares,简称PLS)和遗传算法(genetic algorithms,简称GAs)的RBFN构造策略和一种更有效的径基宽度取值方法.在这个集成构造策略中,PLS克服了K-Means算法求取径基易陷入局部最优的弊病,并使合成径基比由正交算法获取的径基更具代表性;而所提出的径基宽度取值方法和GAs则为网络性能和结构的实质性改善与优化提供了保障.实验证实了基于PLS和GAs的RBFN构造策略及所提出的径基宽度取值方法的优越性、可靠性和有效性.
基金Project(51176014)supported by the National Natural Science Foundation of ChinaProject(2016JJ2003)supported by Natural Scienceof Hunan Province,ChinaProject(KF1605)supported by Key Laboratory of Safety Design and Reliability Technology of Engineering Vehicle in Hunan Province,China。
文摘To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金Projects(60974031,60704011,61174128)supported by the National Natural Science Foundation of China
文摘A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness.
基金Project(50808025) supported by the National Natural Science Foundation of ChinaProject(20090162110057) supported by the Doctoral Fund of Ministry of Education, China
文摘A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifying its yaw angle to determine his vision range and the court situation of the sportsman within his vision range can be further learned. In basketball match videos characterized by cluttered background, fast motion of the sportsmen and low resolution of their head images, and the covariance descriptor, were adopted to fuse multiple visual features of the head region, which can be seen as a point on the Riemannian manifold and then mapped to the tangent space. Then, the classification of head yaw angle was directly completed in this space through the trained multiclass LogitBoost. In order to describe the court situation of all sportsmen within the ball carrier’s vision range, artificial potential field (APF)-based information was introduced. Finally, the behavior of the ball carrier—shooting, passing and dribbling, was predicted using radial basis function (RBF) neural network as the classifier. Experimental results show that the average prediction accuracy of the proposed method can reach 80% on the video recorded in basketball matches, which validates its effectiveness.
基金Project(41374118)supported by the National Natural Science Foundation,ChinaProject(20120162110015)supported by Research Fund for the Doctoral Program of Higher Education,China+3 种基金Project(2015M580700)supported by the China Postdoctoral Science Foundation,ChinaProject(2016JJ3086)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(2015JC3067)supported by the Hunan Provincial Science and Technology Program,ChinaProject(15B138)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.