We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overl...We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overlying strata in paste backfill mining, structural movement of the stope strata as well as the stope stress distribution laws. Furthermore, authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining. The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining. Compared with the roof caving mining, the degree of stress concentration and area of influence in the paste filling stope were apparently smaller. And the degree of destruction and area of the overlying strata decreased prominently. Also, there was no apparent strata behavior in the working face. Lastly, the filling ratio was the key to control the movement and deformation of the overlying strata. Combined with a specific engineering example, the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining.展开更多
The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the ...The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the free surface condition and body boundary condition. The difference is that the MLM applies a nonlinear Bernoulli equation to obtain pressure distribution, which has been proven to be helpful to enhance the accuracy of hydrodynamic loads. The Wagner condition in this paper was generalized to solve the problem of the water entry of a wedge body with rotational velocity. The comparison of wet width between the MLM and a fully nonlinear numerical approach was given, and they agree well with each other. The effect of angular velocity on the hydrodynamic loads of a wedge body was investigated.展开更多
Behavior-based flocking has got remarkable attention in the recent past. The flocking algorithms can have inherent properties like organizing,healing and re-configuring for a distributed system. In this research we pr...Behavior-based flocking has got remarkable attention in the recent past. The flocking algorithms can have inherent properties like organizing,healing and re-configuring for a distributed system. In this research we presented the emergent flocking behavior-based control. We defined the basis behavior and with variety of combination, and obtained a complex group behavior flocking. Unlike classical flocking, we implemented additional rules obstacle avoidance,formation and seek target which results in V-formation flocking while avoiding obstacles. We performed the visual simulation of our flocking algorithm using MATLAB. The results concluded that the multi-boid flock could successfully navigate to the target while avoiding collisions. This can be applied to areas where we need to maximize the coverage of sensors or minimize the risk of combative attack,both in military and civilian scenarios.展开更多
Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case ...Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.展开更多
基金supported by the National Natural Science Foundation of China (No. 50774077)the Special Funds of Universities Outstanding Doctoral Dissertation (No. 200760)+1 种基金the Independent Research Funding of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM10X02)the Fundamental Research Funds for the Central Universities (Nos. 2010QNA31 and2010QNA32)
文摘We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overlying strata in paste backfill mining, structural movement of the stope strata as well as the stope stress distribution laws. Furthermore, authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining. The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining. Compared with the roof caving mining, the degree of stress concentration and area of influence in the paste filling stope were apparently smaller. And the degree of destruction and area of the overlying strata decreased prominently. Also, there was no apparent strata behavior in the working face. Lastly, the filling ratio was the key to control the movement and deformation of the overlying strata. Combined with a specific engineering example, the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining.
基金Supported by Supported by "111 Program" (B07019)
文摘The water entry problem of an asymmetric wedge with roll motion was analyzed by the method of a modified Logvinovich model (MLM). The MLM is a kind of analytical model based on the Wagner method, which linearizes the free surface condition and body boundary condition. The difference is that the MLM applies a nonlinear Bernoulli equation to obtain pressure distribution, which has been proven to be helpful to enhance the accuracy of hydrodynamic loads. The Wagner condition in this paper was generalized to solve the problem of the water entry of a wedge body with rotational velocity. The comparison of wet width between the MLM and a fully nonlinear numerical approach was given, and they agree well with each other. The effect of angular velocity on the hydrodynamic loads of a wedge body was investigated.
文摘Behavior-based flocking has got remarkable attention in the recent past. The flocking algorithms can have inherent properties like organizing,healing and re-configuring for a distributed system. In this research we presented the emergent flocking behavior-based control. We defined the basis behavior and with variety of combination, and obtained a complex group behavior flocking. Unlike classical flocking, we implemented additional rules obstacle avoidance,formation and seek target which results in V-formation flocking while avoiding obstacles. We performed the visual simulation of our flocking algorithm using MATLAB. The results concluded that the multi-boid flock could successfully navigate to the target while avoiding collisions. This can be applied to areas where we need to maximize the coverage of sensors or minimize the risk of combative attack,both in military and civilian scenarios.
基金Supported by the NSF of China(10231010)Supported by the NSF of CQSXXY (20030104)
文摘Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.