期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于全卷积神经网络的植物叶片自动分割及表型解析
被引量:
7
1
作者
王鹤树
曹丽英
《中国农机化学报》
北大核心
2021年第8期161-168,共8页
为提高植物叶片图像中形态参数提取的效率和准确率,以全卷积神经网络为基础,对模型构架和关键函数进行优化,通过有监督的学习方法实现植物叶片图像分割效果。模型在测试集上的平均召回率r为0.95,MIoU为0.94。在分割结果中提取植物叶片...
为提高植物叶片图像中形态参数提取的效率和准确率,以全卷积神经网络为基础,对模型构架和关键函数进行优化,通过有监督的学习方法实现植物叶片图像分割效果。模型在测试集上的平均召回率r为0.95,MIoU为0.94。在分割结果中提取植物叶片的形态学参数与人工提取结果高度相关,r^(2)>0.96。该研究实现了植物叶片图像高通量地分割,并且在分割结果中提取的植物叶片形态参数可以用于作物长势监测等相关研究。
展开更多
关键词
图像分割
深度学习
全卷积神经网络
形态参数解析
在线阅读
下载PDF
职称材料
题名
基于全卷积神经网络的植物叶片自动分割及表型解析
被引量:
7
1
作者
王鹤树
曹丽英
机构
吉林农业大学信息技术学院
出处
《中国农机化学报》
北大核心
2021年第8期161-168,共8页
基金
国家自然科学基金项目(U19A2061)。
文摘
为提高植物叶片图像中形态参数提取的效率和准确率,以全卷积神经网络为基础,对模型构架和关键函数进行优化,通过有监督的学习方法实现植物叶片图像分割效果。模型在测试集上的平均召回率r为0.95,MIoU为0.94。在分割结果中提取植物叶片的形态学参数与人工提取结果高度相关,r^(2)>0.96。该研究实现了植物叶片图像高通量地分割,并且在分割结果中提取的植物叶片形态参数可以用于作物长势监测等相关研究。
关键词
图像分割
深度学习
全卷积神经网络
形态参数解析
Keywords
image segmentation
deep learning
fully neural network
morphological parameter analysis
分类号
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于全卷积神经网络的植物叶片自动分割及表型解析
王鹤树
曹丽英
《中国农机化学报》
北大核心
2021
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部