期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于物理约束的纬编针织物动态形变模拟
1
作者 梁金星 李东盛 +3 位作者 韩开放 胡新荣 彭佳佳 李立军 《纺织学报》 北大核心 2025年第3期109-115,共7页
为模拟针织物纱线间的相互作用和线圈形态变化,提出一种基于物理约束的针织物动态形变模拟方法。首先,将纱线划分为多个胶囊几何体,通过构建距离约束、罚函数约束、碰撞约束和摩擦约束以及阻尼,有效模拟了线圈嵌套结构、纱线间摩擦行为... 为模拟针织物纱线间的相互作用和线圈形态变化,提出一种基于物理约束的针织物动态形变模拟方法。首先,将纱线划分为多个胶囊几何体,通过构建距离约束、罚函数约束、碰撞约束和摩擦约束以及阻尼,有效模拟了线圈嵌套结构、纱线间摩擦行为、纱线的弹性响应以及纱线碰撞等关键物理现象;然后,基于NVIDIA PhysX的物理仿真实现过程,实现了不同针织花型的仿真。结果表明:模型可实现不同针织花型的形变,展示针织花型在外力作用下纱线弯曲、拉伸和扭曲的形变特征;仿真效果与真实样品具有较好一致性和逼真度,验证了所提出模型的准确性。该研究为针织物形变模拟领域提供了新的视角,对针织花型设计、模拟软件开发以及针织工艺优化具有重要价值。 展开更多
关键词 针织物 形变模拟 物理约束 针织花型仿真 胶囊体
在线阅读 下载PDF
基于三维点云数据的花瓣形态及生长过程模拟 被引量:4
2
作者 淮永建 杨丹琦 蔡东娜 《农业工程学报》 EI CAS CSCD 北大核心 2019年第15期155-164,共10页
目前对于虚拟植物的研究多是通过图形建模来模拟植物的生长变化,计算复杂且操作不灵活。随着三维扫描和点云重建技术的发展,为复杂植物形态可视化提供了新的手段。论文基于三维扫描的植物点云数据模型,研究了植物花瓣的形变和生长过程... 目前对于虚拟植物的研究多是通过图形建模来模拟植物的生长变化,计算复杂且操作不灵活。随着三维扫描和点云重建技术的发展,为复杂植物形态可视化提供了新的手段。论文基于三维扫描的植物点云数据模型,研究了植物花瓣的形变和生长过程模拟。利用三维扫描仪获取植物花瓣的生长序列,采用MATLAB根据实测点云数据拟合植物生长函数曲线,最后将传统花卉生长模拟与点云模型的自由变形相融合,提出了依据实测点云数据通过点云模型变形算法模拟花卉植物动态生长的方法。该方法不仅能够保留花卉植物复杂的形态特征,而且使形变控制简单,模拟的花瓣形态及生长真实自然。此外,该方法还与基于物理的模拟方法进行比较,并利用拟合回归分析、实测花瓣数据与重建数据间误差对该方法的准确性进行了分析。结果显示花瓣生长期内决定系数达0.75以上及平均误差控制在2 mm以内,研究结果为花卉植物的生长形变模拟提供了参考。 展开更多
关键词 三维 变形 模型 虚拟植物 点云 数据拟合 植物形变模拟
在线阅读 下载PDF
Atomic-scale understanding of martensitic transformation and transition-induced twinning in deformed Fe-Mn alloys
3
作者 ZHANG Hong-bo LI Hong-kui +2 位作者 OU Xiao-qin SHEN Jie SONG Min 《Journal of Central South University》 2025年第4期1211-1222,共12页
In the present study,molecular dynamic simulation(MD)was used to investigate the plastic deformation process of the Fe-Mn alloys with different Mn contents.The influences of Mn contents ranging from 10%to 30%(at%)on t... In the present study,molecular dynamic simulation(MD)was used to investigate the plastic deformation process of the Fe-Mn alloys with different Mn contents.The influences of Mn contents ranging from 10%to 30%(at%)on the deformation behavior and the controlling mechanism of the Fe-base alloys were analyzed.The results show that phase transformations and{112}<111>_(BCC)deformation twinning occur in all Fe-Mn alloys but follow different deformation paths.In the Fe-10%Mn alloy the deformation twinning mechanism obeys the FCC-related path,the Fe-20%Mn alloy involves both the FCC-and HCP-related paths,and the deformation of the Fe-30%Mn alloy is dominated by the HCP-related twinning path.The addition of Mn can increase the stacking fault energy and retard the activation of slip systems as well as the formation of stacking faults.Thus,a higher content of Mn can delay the FCC®ε-martensite and the subsequentε-martensite®BCC phase transition at the intersection of twoε-martensitic bands.Therefore,the addition of Mn alloying element increases the yield strength and reduces the elastic modulus of the Fe-Mn alloys.The formation of deformation twins will contribute to the work-hardening effect and delay the necking and fracture of alloys.It is expected that the results in the present study will provide theoretical reference for the design and optimization of high-performance steels. 展开更多
关键词 Fe-Mn steel tensile deformation molecular dynamics simulation phase transformation
在线阅读 下载PDF
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China 被引量:1
4
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
在线阅读 下载PDF
基于时序InSAR技术的近距离多煤层参数反演方法 被引量:2
5
作者 刘翠芝 王兴杰 +1 位作者 贺黎明 唐永亮 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期897-904,共8页
近距离多煤层开采引起的采空区地面沉降在当前工矿区沉陷中占有较大的比例,而天基InSAR技术在工矿区大范围形变监测方面具有显著优势.以2018年1月至2019年8月间的43景C波段Sentinel-1B SAR数据为基础,通过时序InSAR技术对近距离多煤层... 近距离多煤层开采引起的采空区地面沉降在当前工矿区沉陷中占有较大的比例,而天基InSAR技术在工矿区大范围形变监测方面具有显著优势.以2018年1月至2019年8月间的43景C波段Sentinel-1B SAR数据为基础,通过时序InSAR技术对近距离多煤层开采的康平煤田进行了大范围沉降监测.以Okada模型为基础,结合近距离多煤层分布特征,采用叠加理论的原则,提出了一种基于多源模型的近距离多煤层参数反演方法.通过定量计算弹性半空间下双源模型和三源模型近距离多煤层参数反演的精度,发现三源模型精度更高,更符合小康矿近距离多煤层开采的实际特征.本研究可以为基于InSAR技术的近距离多煤层开采沉降监测及参数反演提供参考. 展开更多
关键词 近距离多煤层 参数反演 时序InSAR 多源Okada模型 形变模拟
在线阅读 下载PDF
考虑区域构造特征的最小二乘配置方法初步研究 被引量:14
6
作者 张希 江在森 《中国地震》 CSCD 北大核心 2001年第4期403-407,共5页
关键词 地震 断裂构造 内插 最小二乘配置 区域构造特征 模拟理论重直形变
在线阅读 下载PDF
Modeling of metadynamic recrystallization kinetics after hot deformation of low-alloy steel Q345B 被引量:3
7
作者 马博 彭艳 +1 位作者 刘云飞 贾斌 《Journal of Central South University》 SCIE EI CAS 2010年第5期911-917,共7页
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re... Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6). 展开更多
关键词 low-alloy steel kinetics model hot deformation metadynamic recrystallization activation energy
在线阅读 下载PDF
Deformation simulation of low-temperature high-speed extrusion for 6063 Al alloy 被引量:2
8
作者 王孟君 何钊 +2 位作者 武星星 李彩文 李光耀 《Journal of Central South University》 SCIE EI CAS 2010年第5期881-887,共7页
The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of ... The hot compression test of 6063 Al alloy was performed on a Gleeble-1500 thermo-simulation machine, and the forming of 6063 rod cxtrudate in low-temperature high-speed extrusion was simulated with extrusion ratio of 25 on the platform of DEFORM 2D successfully. From the compression experimental results, the flow stress model of this Al alloy is obtained which could be the constitutive equation in the simulation of low-temperature high-speed extrusion process. From the numerical simulation results, there is a higher strain concentration at the entrance of the die and the exit temperature reaches up to 522 ℃ in low-temperature high-speed extrusion, which approaches to the quenching temperature of the 6063 Al alloy. The results show that the low-temperature high-speed extrusion method as a promsing one can reduce energy consumption effectively. 展开更多
关键词 6063 Al alloy hot deformation low-temperature high-speed extrusion constitutive equation numerical simulation
在线阅读 下载PDF
Anchoring effect and energy-absorbing support mechanism of large deformation bolt 被引量:14
9
作者 ZHAO Tong-bin XING Ming-lu +2 位作者 GUO Wei-yao WANG Cun-wen WANG Bo 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期572-581,共10页
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th... To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree. 展开更多
关键词 rock burst large deformation bolt numerical simulation pull-out test anchoring effect energy-absorbing mechanism
在线阅读 下载PDF
Effects of tensile temperatures on phase transformations in zirconium by molecular dynamics simulations 被引量:1
10
作者 AN Ke-ying OU Xiao-qin +3 位作者 AN Xing-long ZHANG Hao NI Song SONG Min 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期1932-1945,共14页
The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental... The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental observation under high resolution transmission electron microscopy.The results show that externally applied loading first induced the HCP to body-centered cubic(BCC)phase transition in the Pitsch-Schrader(PS)orientation relationship(OR).Then,the face-centered cubic(FCC)structure transformed from the BCC phase in the Bain path.However,the HCP-to-BCC transition was incomplete at 100 K and 300 K,resulting in a prismatic-type OR between the FCC and original HCP phase.Additionally,at the temperature ranging from 100 K to 600 K,the inverse BCC-to-HCP transition occurred locally following other variants of the PS OR,resulting in a basal-type relation between the newly generated HCP and FCC phases.A higher tensile temperature promoted the amount of FCC phase transforming into the BCC phase when the strain exceeded 45%.Besides,the crystal stretched at lower temperatures exhibits relatively higher strength but by the compromise of plasticity.This study reveals the deformation mechanisms in HCP-Zr at different temperatures,which may provide a better understanding of the deformation mechanism of zirconium alloys under different application environments. 展开更多
关键词 ZIRCONIUM phase transformation molecular dynamics simulation deformation mechanism tensile temperature
在线阅读 下载PDF
Constitutive analysis of AZ31 magnesium alloy plate 被引量:1
11
作者 余琨 蔡志勇 +2 位作者 王晓艳 史褆 黎文献 《Journal of Central South University》 SCIE EI CAS 2010年第1期7-12,共6页
The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and... The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and 10 s-t and the maximum deformation degree of 80%. The relationship between the flow stress and deformation temperature as well as strain rate was analyzed. The materials parameters and the apparent activation energy were calculated. The constitutive relationship was established with a Zener-Hollomon (Z) parameter. The results show that the flow stress increases with the increase of strain rate at a constant temperature, but it decreases with the increase of deformation temperature at a constant strain rate. The apparent activation energy is estimated to be 129-153 kJ/mol, which is close to that for self-diffusion of magnesium. The established constitutive relationship can reflect the change of flow stress during hot deformation. 展开更多
关键词 AZ31 magnesium alloy hot deformation flow stress constitutive relationship
在线阅读 下载PDF
Physical simulation of hot deformation of TiAl based alloy 被引量:4
12
作者 张俊红 黄伯云 +2 位作者 贺跃辉 周科朝 孟力平 《Journal of Central South University of Technology》 2002年第2期73-76,共4页
In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?... In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?100 ℃ with strain rates of 10 -3 10 -1 s -1 . Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n , has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ=K 1d rex -0 56 . The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lg d rex =-0 281?1gZ +3 908?1. 展开更多
关键词 hot deformation TiAl based alloy microstructure refining Zener Hollomon parameter
在线阅读 下载PDF
Effect of strain hardening and strain softening on welding distortion and residual stress of A7N01-T4 aluminum alloy by simulation analysis 被引量:8
13
作者 闫德俊 刘雪松 +2 位作者 李军 杨建国 方洪渊 《Journal of Central South University》 SCIE EI CAS 2010年第4期666-673,共8页
The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite... The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones. 展开更多
关键词 strain hardening strain softening plastic strain welding residual stress
在线阅读 下载PDF
Simulation and experiment analysis on thermal deformation of tool system in single-point diamond turning of aluminum alloy 被引量:4
14
作者 ZHANG Yuan-jing DONG Guo-jun ZHOU Ming 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2223-2229,共7页
The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cu... The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed. 展开更多
关键词 ultra-precision cutting tool wear DIAMOND thermal deformation form accuracy
在线阅读 下载PDF
Finite element analysis and simulation for cold precision forging of a helical gear 被引量:13
15
作者 冯玮 华林 韩星会 《Journal of Central South University》 SCIE EI CAS 2012年第12期3369-3377,共9页
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille... To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm. 展开更多
关键词 helical gear cold precision forging finite element simulation relief-hole principle
在线阅读 下载PDF
Simulation of coupled THM process in surrounding rock mass of nuclear waste repository in argillaceous formation 被引量:1
16
作者 蒋中明 HOXHA Dashnor +1 位作者 HOMAND Fran?oise 陈永贵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期631-637,共7页
To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-si... To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-situ test way. A transversely isotropic model was employed to reproduce the whole test process numerically. Parameters of the rock mass were determined by laboratory and in-situ experiments. Based on the numerical simulation results and in-situ test data, the variation processes of pore water pressure, temperature and deformation of surrounding rock were analyzed. Both the measured data and numerical results reveal that the thermal perturbation is the principal driving force which leads to the variation of pore water pressure and deformations in the surrounding rock. The temperature, pore pressure and deformation of rock mass change rapidly at each initial heating stage with a constant heating power. The temperature field near the heater borehole is relatively steady in the subsequent stages of the heating phase. However, the pore pressure and deformation fields decrease gradually with temperature remaining unchanged condition. It also shows that a transversely isotropic model can reproduce the THM coupling effects generating in the near-field of a nuclear waste repository in an argillaceous formation. 展开更多
关键词 argillaceous formation thermo-hydro-mechanical(THM) process in-situ test
在线阅读 下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:28
17
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
在线阅读 下载PDF
Effect of key factors on cold orbital forging of a spur bevel gear 被引量:1
18
作者 庄武豪 董丽颖 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期277-285,共9页
Cold orbital forging is an advanced spur bevel gear forming technology. Generally, the spur bevel gear in the cold orbital forging process is formed by two steps: the preforming step and the final step. Due to the gre... Cold orbital forging is an advanced spur bevel gear forming technology. Generally, the spur bevel gear in the cold orbital forging process is formed by two steps: the preforming step and the final step. Due to the great importance of the final step to gear forming and its complication with interactive factors, this work aims at examining the influence of key factors on the final step in cold orbital forging of a spur bevel gear. Using the finite element(FE) method and control variate method, the influence rules of four key factors, rotation velocity of the upper tool, n, feeding velocity of the lower tool, v, tilted angle of the upper tool, γ, friction factor between the tools and the billet, m, on the geometry and the deformation inhomogeneity of the cold orbital forged gear are thoroughly clarified. The research results show that the flash becomes more homogeneous with increasing v, increasing m, decreasing n or decreasing γ. And the deformation of the gear becomes more homogeneous with increasing v, decreasing n or decreasing γ. Finally, a corresponding experiment is conducted, which verifies the accuracy of FE simulation conclusions. 展开更多
关键词 cold orbital forging FE modeling key factors spur bevel gears
在线阅读 下载PDF
Simulation of rock deformation and mechanical characteristics using clump parallel-bond models 被引量:10
19
作者 夏明 赵崇斌 《Journal of Central South University》 SCIE EI CAS 2014年第7期2885-2893,共9页
To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discus... To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics. 展开更多
关键词 particle simulation method clump parallel-bond model crack density loading procedure rock mechanical behavior
在线阅读 下载PDF
Deformation prediction and analysis of underground mining during stacking of dry gangue in open-pit based on response surface methodology 被引量:6
20
作者 QIU Xian-yang CHEN Jia-yao +3 位作者 SHI Xiu-zhi ZHANG Shu ZHOU Jian CHEN Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期406-417,共12页
Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive proble... Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive problem of stability in the double mined-out area of the Tong-Lv-Shan(TLS)mine,which employed the dry stacked gangue technology,this paper applies the function fitting theory and a regression analysis method to screen the sensitive interval of four influencing factors based on single-factor experiments and the numerical simulation software FLAC3D.The influencing factors of the TLS mine consist of the column thickness(d),gob area span(D),boundary pillar thickness(h)and height of tailing gangue(H).The fitting degree between the four factors and the displacement of the gob roof(W)is reasonable because the correlation coefficient(R2)is greater than0.9701.After establishing29groups that satisfy the principles of Box-Behnken design(BBD),the dry gangue tailings process was re-simulated for the selected sensitive interval.Using a combination of an analysis of variance(ANOVA),regression equations and a significance analysis,the prediction results of the response surface methodology(RSM)show that the significant degree for the stability of the mined-out area for the factors satisfies the relationship of h>D>d>H.The importance of the four factors cannot be disregarded in a comparison of the prediction results of the engineering test stope in the TLS mine.By comparing the data of monitoring points and function prediction,the proposed method has shown promising results,and the prediction accuracy of RSM model is acceptable.The relative errors of the two test stopes are1.67%and3.85%,respectively,which yield satisfactory reliability and reference values for the mines. 展开更多
关键词 response surface methodology (RSM) Box-Behnken design (BBD) numerical simulation boundary pillar deformation prediction
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部