针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的...针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的平方项来调节步长,采用步长值固定与变化相结合的方法,解决了自适应滤波算法收敛速度慢、稳态误差大的问题,适应性得到提高,提高了语音信号通信质量。该系统以TMS320VC5416和音频编解码芯片TLV320AIC23B为核心,通过多通道缓冲串口(McBSP)和串行外设接口(SPI)实现了语音数据的高速采集和实时处理。实验仿真和测试结果表明该算法消除噪声性能好,信噪比在低输入信噪比情况下提高约10 d B,语音质量感知评价(PESQ)分值也得到较大提高,能有效提高语音信号质量,且该系统性能稳定,能进一步提高耳蜗前端语音的清晰度和可懂度。展开更多
针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印...针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。展开更多
文摘针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的平方项来调节步长,采用步长值固定与变化相结合的方法,解决了自适应滤波算法收敛速度慢、稳态误差大的问题,适应性得到提高,提高了语音信号通信质量。该系统以TMS320VC5416和音频编解码芯片TLV320AIC23B为核心,通过多通道缓冲串口(McBSP)和串行外设接口(SPI)实现了语音数据的高速采集和实时处理。实验仿真和测试结果表明该算法消除噪声性能好,信噪比在低输入信噪比情况下提高约10 d B,语音质量感知评价(PESQ)分值也得到较大提高,能有效提高语音信号质量,且该系统性能稳定,能进一步提高耳蜗前端语音的清晰度和可懂度。
文摘针对传统最小均方误差(Least mean square error,LMS)和最小二乘准则(Recursive least squares,RLS)的神经网络语音水印的局限性,提出了基于短时能量和最小相对均方误差(Least relative mean square error,LRMS)准则的神经网络语音水印算法。首先在首帧语音中嵌入同步序列,然后求出每帧的短时能量并对大于设定阈值的语音帧进行小波变换,最后利用以LRMS准则构建的神经网络实现水印的嵌入和提取。通过合理设定短时能量阈值,实现了水印容量和鲁棒性的平衡,而采用Levenberg-Marguardt(LM)算法迅速地让网络收敛。理论分析和实验结果表明,与文献[8]相比,本文提出的神经网络方案收敛速度更快,对于噪声、低通滤波、重采样和重量化等攻击有更强的鲁棒性,性能平均提高了5%。