期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
低密度奇偶校验码正则化神经网络归一化最小和译码算法
1
作者 周华 周鸣 张立康 《电子与信息学报》 北大核心 2025年第5期1486-1493,共8页
低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致... 低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致的过拟合问题,引入正则化(Regularization)优化了神经网络中边信息的权重训练,抑制了基于神经网络译码的过拟合问题,分别得到RNNMS,RVC-SNNMS和RCVSNNMS算法。仿真结果表明:采用共享权重可以减轻神经网络训练负担,降低LDPC码基于神经网络译码的误比特率(BER);正则化能有效缓解过拟合现象提升神经网络的译码性能。针对码长为576,码率为0.75的LDPC码,当误码率BER=10-6时,RNNMS,RVC-SNNMS和RCV-SNNMS算法相较于NNMS,VC-SNNMS和CV-SNNMS算法分别得到了0.18 dB,0.22 dB和0.27 dB的信噪比(SNR)增益,其中最佳的RVC-SNNMS算法相较于BP算法、NNMS算法和SNNMS算法,分别获得了0.55 dB,0.51 dB和0.22 dB的信噪比增益。 展开更多
关键词 低密度奇偶校验码 神经网络 归一化最小和译码 过拟合 正则化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部