期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
低密度奇偶校验码正则化神经网络归一化最小和译码算法
1
作者
周华
周鸣
张立康
《电子与信息学报》
北大核心
2025年第5期1486-1493,共8页
低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致...
低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致的过拟合问题,引入正则化(Regularization)优化了神经网络中边信息的权重训练,抑制了基于神经网络译码的过拟合问题,分别得到RNNMS,RVC-SNNMS和RCVSNNMS算法。仿真结果表明:采用共享权重可以减轻神经网络训练负担,降低LDPC码基于神经网络译码的误比特率(BER);正则化能有效缓解过拟合现象提升神经网络的译码性能。针对码长为576,码率为0.75的LDPC码,当误码率BER=10-6时,RNNMS,RVC-SNNMS和RCV-SNNMS算法相较于NNMS,VC-SNNMS和CV-SNNMS算法分别得到了0.18 dB,0.22 dB和0.27 dB的信噪比(SNR)增益,其中最佳的RVC-SNNMS算法相较于BP算法、NNMS算法和SNNMS算法,分别获得了0.55 dB,0.51 dB和0.22 dB的信噪比增益。
展开更多
关键词
低密度奇偶校验码
神经网络
归一化最小和译码
过拟合
正则化
在线阅读
下载PDF
职称材料
题名
低密度奇偶校验码正则化神经网络归一化最小和译码算法
1
作者
周华
周鸣
张立康
机构
南京信息工程大学电子与信息工程学院
江苏省大气环境与装备技术协同创新中心
出处
《电子与信息学报》
北大核心
2025年第5期1486-1493,共8页
基金
国家自然科学基金(62001238,62201271)。
文摘
低密度奇偶校验(LDPC)码基于神经网络的归一化最小和(NNMS)译码算法按照网络中权重的共享方式可分为不共享(NNMS)、全共享(SNNMS)、部分共享(VC-SNNMS和CV-SNNMS)等。该文针对LDPC码在使用NNMS,VC-SNNMS和CV-SNNMS译码时因高复杂度导致的过拟合问题,引入正则化(Regularization)优化了神经网络中边信息的权重训练,抑制了基于神经网络译码的过拟合问题,分别得到RNNMS,RVC-SNNMS和RCVSNNMS算法。仿真结果表明:采用共享权重可以减轻神经网络训练负担,降低LDPC码基于神经网络译码的误比特率(BER);正则化能有效缓解过拟合现象提升神经网络的译码性能。针对码长为576,码率为0.75的LDPC码,当误码率BER=10-6时,RNNMS,RVC-SNNMS和RCV-SNNMS算法相较于NNMS,VC-SNNMS和CV-SNNMS算法分别得到了0.18 dB,0.22 dB和0.27 dB的信噪比(SNR)增益,其中最佳的RVC-SNNMS算法相较于BP算法、NNMS算法和SNNMS算法,分别获得了0.55 dB,0.51 dB和0.22 dB的信噪比增益。
关键词
低密度奇偶校验码
神经网络
归一化最小和译码
过拟合
正则化
Keywords
Low Density Parity Check(LDPC)codes
Neural network
Normalized min-sum decoding
Overfitting
Regularization
分类号
TN911.22 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
低密度奇偶校验码正则化神经网络归一化最小和译码算法
周华
周鸣
张立康
《电子与信息学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部