期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
跨模态多层特征融合的遥感影像语义分割 被引量:1
1
作者 李智杰 程鑫 +3 位作者 李昌华 高元 薛靖裕 介军 《计算机科学与探索》 北大核心 2025年第4期989-1000,共12页
多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不... 多模态语义分割网络能够利用不同模态中的互补信息来提高分割精度,在地物分类领域具有广泛的应用潜力。然而,现有的多模态遥感影像语义分割模型大多忽略了深度特征的几何形状信息,未将多层特征充分利用就进行融合,导致跨模态特征提取不充分,融合效果不理想。针对这些问题,提出了一种基于多模态特征提取和多层特征融合的遥感影像语义分割模型。通过构建双分支编码器,模型能够分别提取遥感影像的光谱信息和归一化数字表面模型(nDSM)的高程信息,并深入挖掘nDSM的几何形状信息。引入跨层丰富模块细化完善每层特征,从深层到浅层充分利用多层的特征信息。完善后的特征通过注意力特征融合模块,对特征进行差异性互补和交叉融合,以减轻分支结构之间的差异,充分发挥多模态特征的优势,从而提高遥感影像分割精度。在ISPRS Vaihingen和Potsdam数据集上进行实验,mF1分数分别达到了90.88%和93.41%,平均交互比(mIoU)分别达到了83.49%和87.85%,相较于当前主流算法,该算法实现了更准确的遥感影像语义分割。 展开更多
关键词 遥感影像 归一化数字表面模型(ndsm) 语义分割 特征提取 特征融合
在线阅读 下载PDF
结合nDSM的高分辨率遥感影像深度学习分类方法 被引量:21
2
作者 许慧敏 齐华 +1 位作者 南轲 陈敏 《测绘通报》 CSCD 北大核心 2019年第8期63-67,共5页
针对高分辨率遥感影像因其地物类内差异大、光谱信息相对欠缺导致现有影像分类方法存在错分现象较多、地物边界残缺不完整等问题,本文提出了一种归一化数字表面模型(nDSM)约束的高分辨率遥感影像深度学习分类方法。首先,将nDSM数据作为... 针对高分辨率遥感影像因其地物类内差异大、光谱信息相对欠缺导致现有影像分类方法存在错分现象较多、地物边界残缺不完整等问题,本文提出了一种归一化数字表面模型(nDSM)约束的高分辨率遥感影像深度学习分类方法。首先,将nDSM数据作为附加波段叠加在遥感影像上并获取训练样本;然后,利用优化的U-Net网络进行模型训练得到最优模型;最后,利用最优模型对附加了nDSM波段的遥感影像进行地物分类。试验结果表明,本文方法引入nDSM数据用于U-Net模型训练和分类,可有效提高影像分类精度,得到更加真实可靠的分类结果。 展开更多
关键词 影像分类 归一化数字表面模型 深度学习 U-Net
在线阅读 下载PDF
基于无人机影像的边坡植物物种分类 被引量:10
3
作者 翟浩 唐彬童 辜彬 《西北林学院学报》 CSCD 北大核心 2020年第3期185-190,249,共7页
无人机的出现,给生态调查带来关键性革新。而使用无人机进行生态调查,植物遥感分类是关键,基于平地的无人机植物物种分类创新运用于边坡,使用可见光正射影像联合nDSM(normalized digital surface model,归一化数字表面模型)对边坡植物... 无人机的出现,给生态调查带来关键性革新。而使用无人机进行生态调查,植物遥感分类是关键,基于平地的无人机植物物种分类创新运用于边坡,使用可见光正射影像联合nDSM(normalized digital surface model,归一化数字表面模型)对边坡植物物种进行分类。结果表明,边坡样地的分类的精度达85%,自然样地达84%,与没有加入nDSM的分类结果对比,边坡、自然样地分类精度分别增加了32%和16%。在边坡条件下可见光正射影像与nDSM结合,可大幅度提升边坡植物物种分类精细度。 展开更多
关键词 边坡 无人机 归一化数字表面模型 植物物种分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部