-
题名一种计算非比例阻尼结构地震响应的新方法
被引量:1
- 1
-
-
作者
国巍
余志武
-
机构
中南大学土木工程学院高速铁路建造技术国家工程实验室
-
出处
《力学学报》
EI
CSCD
北大核心
2011年第6期1170-1180,共11页
-
基金
国家自然科学基金(50938008
51108466)
+3 种基金
中国博士后资助基金(20110491277)
中南大学博士后资助基金
中南大学自由探索基金
中南大学引进人才科研基金资助项目~~
-
文摘
在非比例阻尼结构地震响应分析中,直接积分法和强迫解耦法均具有鲜明的优缺点,考虑到计算精度和计算效率的均衡,提出了一种可用于非比例阻尼结构地震响应计算的新方法——多自由度模态方程方法.同时,通过推导指出了直接积分法和强迫解耦法是所提出方法的两种特殊形式,从而构建了非比例阻尼结构地震响应计算方法的完整理论体系.最后采用数值算例验证了多自由度模态方程方法在非比例阻尼结构地震响应计算中的有效性,并说明其可以通过合理划分结构分区来调节计算精度和计算效率.
-
关键词
非比例阻尼
地震响应
直接积分法
强迫解耦法
多自由度模态方程
-
Keywords
non-proportional damping, seismic response, direct integration method, forced-decoupling method, multiple-degree-of-freedom modal equation
-
分类号
TU311.3
[建筑科学—结构工程]
-
-
题名大型渡槽基于反应谱法横向隔震设计方法
被引量:4
- 2
-
-
作者
孙家强
陈壮壮
聂利英
-
机构
河海大学土木与交通学院
-
出处
《武汉理工大学学报(交通科学与工程版)》
2017年第6期1027-1032,共6页
-
基金
国家重点研发计划项目资助(2016YFC0402000
2016YFC0401800)
-
文摘
为提供简捷的渡槽减隔震设计方法,根据大型渡槽结构特点提出渡槽横向双自由度减隔震模型及基于反应谱法的设计计算公式.其中,以强迫解耦法求振型阻尼比时,由于渡槽上部晃动水体阻尼比与下部减隔震支座等效阻尼比相差较大,故通过对比以强迫解耦法和复模态法求得的振型阻尼比、振型基底剪力,来验证解耦精度.结果表明,第二阶振型解耦精度很好,虽然第一阶振型阻尼比误差较大,但是对于控制设计基底剪力影响很小,因此,得出了强迫解耦法总体上适用于求解减隔震渡槽地震响应的结论.而且,由一阶振型基底剪力贡献分析可知,水体晃动对基底剪力的贡献随着隔震周期取值的增大而显著增大,隔震周期是水体晃动贡献的控制因素.
-
关键词
反应谱法
非经典阻尼
强迫解耦法
水体晃动贡献
-
Keywords
response spectrum method
non classical damping
forced decoupling method
the contribution of sloshing water
-
分类号
TV314
[水利工程—水工结构工程]
-
-
题名工程结构中的阻尼与复振型地震响应的完全平方组合
被引量:21
- 3
-
-
作者
周锡元
马东辉
俞瑞芳
-
机构
中国建筑科学研究院
北京工业大学
-
出处
《土木工程学报》
EI
CSCD
北大核心
2005年第1期31-39,共9页
-
文摘
对工程结构中阻尼矩阵的简化处理途径做了简要评述 ,指出目前常用的比例阻尼理论对于小阻尼结构是适用的。但是随着机械阻尼器在结构工程中的广泛应用 ,结构的阻尼矩阵不再满足可以按照相应无阻尼结构振型解耦的条件 ,此时的振型是由实部和虚部组成的复数形式。由于缺乏基于反应谱的复振型地震反应叠加分析方法 ,也是为了简单起见 ,在抗震设计规范中建议采用强迫解耦的近似分析方法。文中对强迫解耦方法的基本概念和适用性进行了探讨 ,指出在一般情况下这一方法是可以接受的 ,但是对于过阻尼和其它特殊情况 ,误差也是比较大的。为了避免这样的误差 ,可以采用文中推荐的基于复振型的完全平方组合 (CCQC)方法。与目前常用的CQC法相比 ,文中建议的CCQC法是按照同样的假定在复振型条件下推导出来的近似分析方法 ,完全避免了复数运算 ,表达方式也一样简单实用 ,因此很适合在实际工程和抗震设计规范中应用。
-
关键词
阻尼
复振型叠加法
SRSS法
CQC法
CCQc法
强迫解耦法
CQC3法
SRSS3法
-
Keywords
damping
complex mode superposition method
SRSS method
CQC method
CCQC method
forced decoupling approach
CQC3 method
SRSS3 method
-
分类号
O328
[理学—一般力学与力学基础]
P315.9
[天文地球—地震学]
-