期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于强稳定收敛的偏正态联合位置与尺度模型的参数估计算法
1
作者 薛潇 吴刘仓 《应用数学》 北大核心 2025年第1期201-210,共10页
传统的迭代算法(例如牛顿算法,EM算法等)在实际应用中,往往存在初始值较为敏感的问题.为解决这一问题,一种强稳定的收敛算法——Upper-crossing/Solution算法(以下称US算法)被提出,这种算法虽然在求解一元非线性函数时具有强稳定性,但... 传统的迭代算法(例如牛顿算法,EM算法等)在实际应用中,往往存在初始值较为敏感的问题.为解决这一问题,一种强稳定的收敛算法——Upper-crossing/Solution算法(以下称US算法)被提出,这种算法虽然在求解一元非线性函数时具有强稳定性,但是不能推广到多元的情形.那么针对多元情形,本文将结合偏正态分布的随机表示,对偏正态联合位置与尺度模型的似然函数进行分层,并且利用MM算法得到一元的情形,再使用US算法构造强稳定的收敛算法.最后通过随机模拟分析和实例分析研究表明了US算法较牛顿迭代法大大降低了算法对初值的敏感度以及显著地提高了收敛的稳定性. 展开更多
关键词 偏正态联合位置与尺度模型 牛顿迭代法 US算法 强稳定收敛
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部