期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
时效处理对Fe-30.0Mn-9.6Al-1.0C低密度钢组织和性能的影响 被引量:1
1
作者 孙建 李景辉 +4 位作者 黄贞益 章小峰 王东生 刘述庆 张龙 《材料工程》 EI CAS CSCD 北大核心 2024年第12期122-133,共12页
采用OM,SEM,XRD,EBSD和TEM等表征手段研究了时效处理对Fe-30.0Mn-9.6Al-1.0C低密度钢组织和性能的影响,并分析其应变硬化行为和强塑化机制。结果表明:经不同温度时效后,Fe-30.0Mn-9.6Al-1.0C低密度钢组织基本仍为全奥氏体并伴有κ-碳化... 采用OM,SEM,XRD,EBSD和TEM等表征手段研究了时效处理对Fe-30.0Mn-9.6Al-1.0C低密度钢组织和性能的影响,并分析其应变硬化行为和强塑化机制。结果表明:经不同温度时效后,Fe-30.0Mn-9.6Al-1.0C低密度钢组织基本仍为全奥氏体并伴有κ-碳化物析出相的存在,时效温度升高,κ-碳化物析出量增大,对低密度钢强度有提升作用但会恶化低密度钢塑性,在1050℃固溶和450℃时效后,低密度钢抗拉强度为811 MPa,伸长率为106.9%,强塑积为86.7 GPa·%,500℃时效时,低密度钢抗拉强度为861 MPa,伸长率为33.2%,强塑积为28.6 GPa·%。低密度钢在1050℃固溶和不同温度时效拉伸变形后,其应变硬化指数呈现双n值现象,应变硬化行为呈多阶段变化规律。低密度钢拉伸变形后组织中存在着大量的位错墙、泰勒晶格和微带以及细小的κ-碳化物,其共同提高了低密度钢的强塑性。 展开更多
关键词 时效处理 低密度钢 微观组织 力学性能 强塑化机制
在线阅读 下载PDF
Characterization of carbon fibers recovered through mechanochemical-enhanced recycling of waste carbon fiber reinforced plastics 被引量:3
2
作者 NZIOKA Antony Mutua ALUNDA Bernard Ouma +4 位作者 YAN Cao-zheng SIM Ye-Jin KIM Myung-Gyun YOON Bok-Young KIM Young-Ju 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2688-2703,共16页
In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of ... In this study,we present the characterization of the carbon fibers recovered from the mechanochemical-enhanced recycling of carbon fiber reinforced fibers.The objectives of the study were to investigate the effect of our modified recycling method on the interfacial properties of recovered fibers.The reinforced plastics were recycled;the recycling efficiency was determined and the recovered fibers were sized using 1 wt%and 3 wt%concentration of(3-aminopropyl)triethoxysilane.We characterized the morphologies utilizing the electron spectroscopy for chemical analysis(ESCA),atomic force microscopy(AFM),FTIR-attenuated total reflection(ATR)spectroscopy and scanning electron microscopy(SEM).Although the surface of the fibers had no cracks,there was evidence of contaminations which affected the interfacial properties and the quality of the fibers.Results showed that the trends in the recovered and virgin fibers were similar with an increase in sizing concentration.The results highlighted the perspectives of increasing the quality of recovered fibers after the recycling process. 展开更多
关键词 recycled carbon fibers fiber reinforced plastics mechanochemical process interfacial property surface morphology
在线阅读 下载PDF
Discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels 被引量:1
3
作者 Akiyuki Takahashi Shota Sato 《Journal of Central South University》 SCIE EI CAS 2014年第4期1249-1255,共7页
A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dis... A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation. 展开更多
关键词 parametric dislocation dynamics oxide dispersion strengthened steel Orowan mechanism critical resolved shear stress dislocation dipole
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部