针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地...针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。展开更多
针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能...针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能力,实现PID控制参数的在线整定,并采用改进的蚁群优化算法优化单神经元PID中的学习速率和神经元比例系数,有效克服了单神经元PID中的学习速率和神经元比例系数因经验设定而无法达到预期控制效果的不足。仿真对比结果显示,相比于传统PID、单神经元PID以及基于蚁群优化算法优化单神经元PID 3种控制方法,本文提出的控制方法超调量分别减少了10.2%、6.1%和1.8%,同时调节时间也相应缩短了0.22、0.07、0.03 s,并且表现出更强的自适应和抗干扰能力,能够使阀门开度控制更加稳定可靠。展开更多
文摘针对传统蚁群算法在农机导航路径规划中存在前期搜索盲目、死锁、收敛速度慢、收敛路径质量低的问题,本文提出基于跳点优化蚁群算法(Jump point optimized ant colony algorithm,JPOACO)的路径规划方法。首先,使用优化跳点搜索算法对地图进行预处理,获得简化跳点;其次,通过简化跳点对栅格地图进行信息素初始化,以加强简化跳点的引导能力和减少前期盲目搜索;接着,设计蚂蚁死亡惩罚机制,以降低陷入死锁蚂蚁走过路径的信息素,减少死锁问题的发生;再者,通过重新设计启发式信息函数并引入分级式信息素因子改进状态转移概率函数,以提高收敛速度,缩短路径长度;最后,采用路径优化策略删减不必要路径节点,以进一步缩短路径长度、提升平滑度,提高路径质量。仿真结果表明,在简单环境中,JPOACO算法求得的路径长度较传统蚁群算法和另一种优化蚁群算法短约22.6%和2.0%,收敛迭代次数、收敛时间分别减少约77.0%、77.5%和49.3%、87.8%,零死亡迭代次数和零死亡时间较后者减少约19.5%和80.5%;在复杂菠萝种植环境中,JPOACO算法较传统蚁群算法和另一种优化蚁群算法求得的路径长度短16.6%和4.7%,收敛迭代次数、收敛时间分别减少约77.1%、17.4%和73.7%、47.4%,零死亡迭代次数和零死亡时间较后者减少约34.3%和58.2%,表明本文算法具有较高的适用性和可行性。
文摘针对电动调节阀控制系统在实际生产过程中存在的非线性、多扰动等问题,提出一种基于改进蚁群算法优化单神经元PID(proportional integral derivative)的控制方法并将其应用于阀门开度控制中。该方法利用单神经元网络的自学习和自适应能力,实现PID控制参数的在线整定,并采用改进的蚁群优化算法优化单神经元PID中的学习速率和神经元比例系数,有效克服了单神经元PID中的学习速率和神经元比例系数因经验设定而无法达到预期控制效果的不足。仿真对比结果显示,相比于传统PID、单神经元PID以及基于蚁群优化算法优化单神经元PID 3种控制方法,本文提出的控制方法超调量分别减少了10.2%、6.1%和1.8%,同时调节时间也相应缩短了0.22、0.07、0.03 s,并且表现出更强的自适应和抗干扰能力,能够使阀门开度控制更加稳定可靠。