期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于强化学习的局部放电深度诊断模型的自动剪枝与轻量化部署
1
作者
朱永利
钱涛
《高电压技术》
CSCD
北大核心
2024年第12期5238-5247,I0001,共11页
目前在PC计算机或服务器端研发的各种基于局部放电信号采样数据的放电识别模型正判率高的几乎都是深度模型,这种模型的体量大,对计算机资源要求高,无法在局部放电检测装置上运行。为此,提出了基于强化学习的局部放电深度诊断模型的自动...
目前在PC计算机或服务器端研发的各种基于局部放电信号采样数据的放电识别模型正判率高的几乎都是深度模型,这种模型的体量大,对计算机资源要求高,无法在局部放电检测装置上运行。为此,提出了基于强化学习的局部放电深度诊断模型的自动剪枝方法与模型轻量化部署方案。在服务器端,采用深度强化学习进行智能体训练,通过与原始局部放电诊断模型交互进行自动搜索进而确定每层的剪枝率;再根据几何中值的滤波器剪枝(FPGM)方法来判别滤波器的重要程度,实现参数的裁剪。仿真实验结果表明:该方法在轻量化系列模型MobileNetV1、V2以及ResNet50经典系列神经网络上取得了85%以上的参数压缩效果。将压缩后的轻量化模型转换成轻量级的ONNX格式,保存在一台便携式电脑上,并通过无线传输方式将模型植入到树莓派智能终端中,进而在智能终端上实现了局部放电的诊断实验模拟。测试结果表明:使用该方法部署的剪枝后局部放电诊断模型在内存占用、功耗以及推理时长等性能指标方面都有很大改善。
展开更多
关键词
局部放电
强化学习剪枝
神经网络
几何中值的滤波器
剪枝
模型的边缘部署
在线阅读
下载PDF
职称材料
题名
基于强化学习的局部放电深度诊断模型的自动剪枝与轻量化部署
1
作者
朱永利
钱涛
机构
华北电力大学电气与电子工程学院
出处
《高电压技术》
CSCD
北大核心
2024年第12期5238-5247,I0001,共11页
基金
河北省自然科学基金(F2022502002)
国家自然科学基金(51677072)。
文摘
目前在PC计算机或服务器端研发的各种基于局部放电信号采样数据的放电识别模型正判率高的几乎都是深度模型,这种模型的体量大,对计算机资源要求高,无法在局部放电检测装置上运行。为此,提出了基于强化学习的局部放电深度诊断模型的自动剪枝方法与模型轻量化部署方案。在服务器端,采用深度强化学习进行智能体训练,通过与原始局部放电诊断模型交互进行自动搜索进而确定每层的剪枝率;再根据几何中值的滤波器剪枝(FPGM)方法来判别滤波器的重要程度,实现参数的裁剪。仿真实验结果表明:该方法在轻量化系列模型MobileNetV1、V2以及ResNet50经典系列神经网络上取得了85%以上的参数压缩效果。将压缩后的轻量化模型转换成轻量级的ONNX格式,保存在一台便携式电脑上,并通过无线传输方式将模型植入到树莓派智能终端中,进而在智能终端上实现了局部放电的诊断实验模拟。测试结果表明:使用该方法部署的剪枝后局部放电诊断模型在内存占用、功耗以及推理时长等性能指标方面都有很大改善。
关键词
局部放电
强化学习剪枝
神经网络
几何中值的滤波器
剪枝
模型的边缘部署
Keywords
partial discharge
reinforcement learning pruning
neural network
filter pruning via geometric median
edge deployment of models
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
TM855 [电气工程—高电压与绝缘技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于强化学习的局部放电深度诊断模型的自动剪枝与轻量化部署
朱永利
钱涛
《高电压技术》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部