提出了一种基于Vulkan架构的弹跳射线(shooting and bouncing ray,SBR)加速计算方法,用于电大复杂目标雷达散射截面的快速计算。设计了高效的Vulkan计算着色器,充分利用GPU硬件光追,显著提升了SBR法中光线求交的计算速度;引入了双命令...提出了一种基于Vulkan架构的弹跳射线(shooting and bouncing ray,SBR)加速计算方法,用于电大复杂目标雷达散射截面的快速计算。设计了高效的Vulkan计算着色器,充分利用GPU硬件光追,显著提升了SBR法中光线求交的计算速度;引入了双命令缓冲机制,使得CPU与GPU能够高效协同工作,从而加速多角度扫描任务的执行;在虚拟孔径面上划分互不干扰的子任务,进一步提升了多GPU并行的利用效率。实验结果表明:所提出方法在计算电大复杂目标雷达散射截面时相较于FEKO RL-GO方法实现了40倍以上的加速;双命令缓冲机制提升了约42%的多角度扫描速度;双GPU计算并行效率超过90%。展开更多
传统弹跳射线(shooting and bouncing rays,SBR)方法采取按均匀射线管的方式进行射线追踪,因此,在计算电大尺寸复杂目标多次反射时,需要处理海量射线,计算效率极低,应用上受到很大限制。提出了一种基于复杂目标不规则三角网(triangle ir...传统弹跳射线(shooting and bouncing rays,SBR)方法采取按均匀射线管的方式进行射线追踪,因此,在计算电大尺寸复杂目标多次反射时,需要处理海量射线,计算效率极低,应用上受到很大限制。提出了一种基于复杂目标不规则三角网(triangle irregular network,TIN)模型的自适应射线管分裂算法(adaptive ray tubesplitting algorithm,ARTSA),利用TIN模型信息动态生成非均匀初始射线管,经过与模型三角面元的求交、多边形裁剪和三角化处理,将初始射线管自适应分裂成多个子射线管,利用口面积分(aperture integral,AI)法计算各子射线管的多次反射场,通过相干叠加获得目标多次反射贡献。与传统SBR方法相比,在相同计算精度下,所提算法能极大地减少射线追踪数量,显著提高计算电大尺寸复杂目标多次反射的效率。展开更多
文摘提出了一种基于Vulkan架构的弹跳射线(shooting and bouncing ray,SBR)加速计算方法,用于电大复杂目标雷达散射截面的快速计算。设计了高效的Vulkan计算着色器,充分利用GPU硬件光追,显著提升了SBR法中光线求交的计算速度;引入了双命令缓冲机制,使得CPU与GPU能够高效协同工作,从而加速多角度扫描任务的执行;在虚拟孔径面上划分互不干扰的子任务,进一步提升了多GPU并行的利用效率。实验结果表明:所提出方法在计算电大复杂目标雷达散射截面时相较于FEKO RL-GO方法实现了40倍以上的加速;双命令缓冲机制提升了约42%的多角度扫描速度;双GPU计算并行效率超过90%。
文摘传统弹跳射线(shooting and bouncing rays,SBR)方法采取按均匀射线管的方式进行射线追踪,因此,在计算电大尺寸复杂目标多次反射时,需要处理海量射线,计算效率极低,应用上受到很大限制。提出了一种基于复杂目标不规则三角网(triangle irregular network,TIN)模型的自适应射线管分裂算法(adaptive ray tubesplitting algorithm,ARTSA),利用TIN模型信息动态生成非均匀初始射线管,经过与模型三角面元的求交、多边形裁剪和三角化处理,将初始射线管自适应分裂成多个子射线管,利用口面积分(aperture integral,AI)法计算各子射线管的多次反射场,通过相干叠加获得目标多次反射贡献。与传统SBR方法相比,在相同计算精度下,所提算法能极大地减少射线追踪数量,显著提高计算电大尺寸复杂目标多次反射的效率。