期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合GAF与CNN的操动机构弹簧储能状态智能辨识
1
作者 施贻铸 满天雪 +3 位作者 周余庆 任燕 沈志煌 孙维方 《重庆大学学报》 CAS CSCD 北大核心 2024年第9期30-38,共9页
操动机构弹簧储能状态的鲁棒辨识对断路器服役性能有重要影响,如何建立起采样信号与弹簧储能状态之间的映射关系是制约其广泛应用的关键。针对这一问题,结合格拉姆角场(Gramian angular field,GAF)与卷积神经网络(convolutional neural ... 操动机构弹簧储能状态的鲁棒辨识对断路器服役性能有重要影响,如何建立起采样信号与弹簧储能状态之间的映射关系是制约其广泛应用的关键。针对这一问题,结合格拉姆角场(Gramian angular field,GAF)与卷积神经网络(convolutional neural network,CNN),提出了一种弹簧储能状态智能辨识方法,并成功应用于断路器操动机构。采用格拉姆角场将采集到的时域信号进行二维化处理,并利用其进行操动机构动态特性演化过程的追踪。断路器操动机构状态辨识实验验证了所提出的智能诊断方法有效性(识别成功率接近100.00%),为断路器在役状态的鲁棒识别提供一种可能。 展开更多
关键词 断路器 卷积神经网络 弹簧储能状态 格拉姆角场
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部