块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S....块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S.该方法相对于传统的基于L2-范数的PCA对噪声更加鲁棒.为了建立稀疏模型,优化过程中引入弹性网,联合使用Lasso与Ridge惩罚因子进行约束.提出了一种贪心算法逐个提取特征向量,对迭代过程的收敛性做了理论证明.将BPCAL1-S应用于图像分类与图像重构,实验结果验证了该方法的有效性.展开更多
提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Pr...提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显地提高目标的识别结果,是一种有效的SAR目标识别方法。展开更多
文摘块主成份分析(block principal component analysis,BPCA)是一种重要的子空间学习方法,能充分利用图像矩阵的部分关联.基于L1-范数的BPCA是近年来发展起来的鲁棒降维的有效方法.本研究提出了一种新的鲁棒稀疏BPCA方法,称之为BPCAL1-S.该方法相对于传统的基于L2-范数的PCA对噪声更加鲁棒.为了建立稀疏模型,优化过程中引入弹性网,联合使用Lasso与Ridge惩罚因子进行约束.提出了一种贪心算法逐个提取特征向量,对迭代过程的收敛性做了理论证明.将BPCAL1-S应用于图像分类与图像重构,实验结果验证了该方法的有效性.
文摘提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显地提高目标的识别结果,是一种有效的SAR目标识别方法。