Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperfo...Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperformance soil reinforcement material,and the mechanical properties of basalt fiber-reinforced soil have become a hot research topic.In this paper,we conducted monotonic triaxial and cyclic triaxial tests,and analyzed the influence of the fiber content,moisture content,and confining pressure on the shear characteristics,dynamic modulus,and damping ratio of basalt fiber-reinforced silty clay.The results illustrate that basalt fiber can enhance the shear strength of silty clay by increasing its cohesion.We find that the shear strength of reinforced silty clay reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%(optimum moisture content).Similarly,we also find that the dynamic modulus that corresponds to the same strain first increases then decreases with increasing fiber content and moisture content and reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%.The dynamic modulus is positively correlated with the confining pressure.However,the change in the damping ratio with fiber content,moisture content,and confining pressure is opposite to that of the dynamic modulus.It can be concluded that the optimum content of basalt fiber for use in silty clay is 0.2%.After our experiments,we used scanning electron microscope(SEM)to observe the microstructure of specimens with different fiber contents,and our results show that the gripping effect and binding effect are the main mechanisms of fiber reinforcement.展开更多
Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compa...Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compacted under its own weight in the landfill. In this work, a series of tests to study the properties of a densified MSW after ground treatment were presented. The tests involved oedometer test, simple shear test, triaxial shear test, and permeability test, which were conducted to investigate the compressibility, shear strength, creep behavior and permeability of the MSW. The results show that the compressibility modulus of the MSW increases as the dry density increases. However, the influence of density on modulus decreases once the density reaches a certain value. Like most soils, the stress-strain curve of the densified MSW can be approximated by a hyperbola in the triaxial shear test. Fibrous components provide additional cohesion for MSW, but have a relatively smaller effect on friction angle. Permeability is also found to be closely related to the dry density of the MSW, i.e., MSW with a higher dry density has a smaller permeability. The permeability coefficient may be less than 10 7 cm/s if the density is high enough.展开更多
Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These ...Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These materials have been appreciated for a long time due to their high acoustic velocities,which are important parameters for active microelectromechanical systems(MEMS) devices.For this object,first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical,piezoelectric and some thermal properties of the(B3) boron phosphide are presented,using the density functional perturbation theory(DFPT).The independent elastic and compliance constants,the Reuss modulus,Voigt modulus,and the shear modulus,the Kleinman parameter,the Cauchy and Born coefficients,the elastic modulus,and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained.The direct and converse piezoelectric coefficients,the longitudinal,transverse,and average sound velocity,the Debye temperature,and the Debye frequency of(B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.展开更多
基金Project(51978674) supported by the National Natural Science Foundation of ChinaProject(2017G008-A) supported by the China Railway Corporation Science and the Technology Development Project。
文摘Fiber reinforcement technology can significantly improve the mechanical properties of soil and has been increasingly applied in geotechnical engineering.Basalt fiber is a new kind of environment-friendly and highperformance soil reinforcement material,and the mechanical properties of basalt fiber-reinforced soil have become a hot research topic.In this paper,we conducted monotonic triaxial and cyclic triaxial tests,and analyzed the influence of the fiber content,moisture content,and confining pressure on the shear characteristics,dynamic modulus,and damping ratio of basalt fiber-reinforced silty clay.The results illustrate that basalt fiber can enhance the shear strength of silty clay by increasing its cohesion.We find that the shear strength of reinforced silty clay reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%(optimum moisture content).Similarly,we also find that the dynamic modulus that corresponds to the same strain first increases then decreases with increasing fiber content and moisture content and reaches its maximum when the fiber content is approximately 0.2%and the moisture content is 18.5%.The dynamic modulus is positively correlated with the confining pressure.However,the change in the damping ratio with fiber content,moisture content,and confining pressure is opposite to that of the dynamic modulus.It can be concluded that the optimum content of basalt fiber for use in silty clay is 0.2%.After our experiments,we used scanning electron microscope(SEM)to observe the microstructure of specimens with different fiber contents,and our results show that the gripping effect and binding effect are the main mechanisms of fiber reinforcement.
基金Foundation item: Project(50979047) supported by the National Natural Science Foundation of China Project(2010CB732103) supported by the National Basic Research Program of China Project(2012-KY-02) supported by the State Key Laboratory of Hydroscience and Engineering (Tsinghua University), China
文摘Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compacted under its own weight in the landfill. In this work, a series of tests to study the properties of a densified MSW after ground treatment were presented. The tests involved oedometer test, simple shear test, triaxial shear test, and permeability test, which were conducted to investigate the compressibility, shear strength, creep behavior and permeability of the MSW. The results show that the compressibility modulus of the MSW increases as the dry density increases. However, the influence of density on modulus decreases once the density reaches a certain value. Like most soils, the stress-strain curve of the densified MSW can be approximated by a hyperbola in the triaxial shear test. Fibrous components provide additional cohesion for MSW, but have a relatively smaller effect on friction angle. Permeability is also found to be closely related to the dry density of the MSW, i.e., MSW with a higher dry density has a smaller permeability. The permeability coefficient may be less than 10 7 cm/s if the density is high enough.
文摘Some compounds of group III-V semiconductor materials exhibit very good piezoelectric,mechanical,and thermal properties and their use in surface acoustic wave(SAW) devices operating specially at GHz frequencies.These materials have been appreciated for a long time due to their high acoustic velocities,which are important parameters for active microelectromechanical systems(MEMS) devices.For this object,first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical,piezoelectric and some thermal properties of the(B3) boron phosphide are presented,using the density functional perturbation theory(DFPT).The independent elastic and compliance constants,the Reuss modulus,Voigt modulus,and the shear modulus,the Kleinman parameter,the Cauchy and Born coefficients,the elastic modulus,and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained.The direct and converse piezoelectric coefficients,the longitudinal,transverse,and average sound velocity,the Debye temperature,and the Debye frequency of(B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.