The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yield...The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yielding criterion of rock mass. Damage factors are proposed to account for degradation of the material parameters to reflect the degree of strain softening. The surrounding rock mass around the cavity is divided into three regions: elastic region, strain softening region and residual state region. The analytical solutions of stress, strain, displacement and radius of each region are obtained. The effects of the strain softening and shear dilatancy behavior on the results are investigated with parametric studies. The results show that the radii of the residual state region and strain softening region in the surrounding rock mass with higher damage degree are larger. The radii of the residual state region and strain softening region are 1-2 times and 1.5-3 times of the cavity radius, respectively. The radial and tangential stresses decrease with the increase of the damage factor. The displacement of the cavity wall for the case with maximum plastic bulk strain is nearly twice than that with no dilation. Rock mass moves more toward the center for the case with larger damage factor and shear dilation. The area of the plastic region is larger when the damage factors are considered. The displacements in the surrounding rock mass increase with the increase of the damage factors and shear dilation factors. The solutions can be applied to the stability analysis and support design of the underground excavation.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
The influence of different features of natural soft clays,namely anisotropy,destructuration and viscosity,on modelling the time-dependent behaviour of Murro embankment was investigated.The newly developed elasto-visco...The influence of different features of natural soft clays,namely anisotropy,destructuration and viscosity,on modelling the time-dependent behaviour of Murro embankment was investigated.The newly developed elasto-viscoplastic models were enhanced for determining viscosity parameters in a straightforward way and adopted for the finite element analysis.The same set of common parameters determined from conventional triaxial and oedometer tests was employed for all models,with additional parameters required for representing different soil features.The finite element predictions by using models coupled with BIOT's consolidation theory were compared with each other and with field data for settlement,horizontal displacement and excess pore pressures.In addition,the stress paths under the embankment loading were also compared with each other to improve the understanding of the effect of different soil features.All simulations demonstrate that all three features significantly influence the predictions.As a consequence,accounting for soil features needs to be carefully considered when they are applied to a construction site.展开更多
Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was present...Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was presented, which was independent of stress history and stress paths. The proposed model was related to an isotropically work-hardening and softening, non-associated and elasto-plastic material description. It is shown that the constitutive modeling, the inherent and stress system-induced cross-anisotropic elasticity is also considered. The constitutive model is capable of simulating the effects on the deformation characteristics of stress history and stress path, pressure level and anisotropic strength.展开更多
Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechan...Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification.展开更多
A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method u...A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.展开更多
In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial func...In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃展开更多
A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the li...A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.展开更多
The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In ord...The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.展开更多
The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under condition of mixed soil slurry (bentonite mixed with cement grout).For comparison,the in...The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under condition of mixed soil slurry (bentonite mixed with cement grout).For comparison,the interfaces both without slurry and with bentonite slurry were analyzed.The experimental results show that different slurries exert much influence on the strength and deformation of soil/structure interface.Under mixed soil slurry,strain softening and shear dilatation are observed,while shear dilatation appears under the small normal stress of the interface without slurry,and shear contraction is significant under the condition of the bentonite slurry.The thickness of the interface was determined by analyzing the disturbed height of the sample with both simple shear test and particle flow code (PFC).An elasto-plastic constitutive model incorporating strain softening and dilatancy for thin layer element of interface was formulated in the framework of generalized potential theory.The relation curves of shear stress and shear strain,as well as the relation curves of normal strain and shear strain,were fitted by a piecewise function composed by hyperbolic functions and resembling normal functions.The entire model parameters can be identified by tests.The new model is verified by comparing the measured data of indoor cut-off wall model tests with the predictions from finite element method (FEM).The FEM results indicate that the stress of wall calculated by using Goodman element is too large,and the maximum deviation between the test data and prediction is about 45%.While the prediction from the proposed model is close to the measured data,and the error is generally less than 10%.展开更多
This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-depend...This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-dependency of preconsolidation pressure. By comparing the rate-dependency formulation with the creep based formulation, the relationship between rate-dependency and creep behaviors is firstly described. The rate-dependency based formulation is then extended to derive an analytical solution for the stress relaxation behavior with defining a stress relaxation coefficient. Based on this, the relationship between the rate-dependency coefficient and the stress relaxation coefficient is derived. Therefore, the uniqueness between behaviors of rate-dependency, creep and stress relaxation with their key parameters is obtained. The uniqueness is finally validated by comparing the simulated rate-dependency of preconsolidation pressure, the estimated values of secondary compression coefficient and simulations of stress relaxation tests with test results on both reconstituted Illite and Berthierville clay.展开更多
A unified constitutive model is proposed to describe the mechanical behavior of weak sandstone at different time scales.The instantaneous behavior of this material is characterized by the Drucker-Prager elastoplastic ...A unified constitutive model is proposed to describe the mechanical behavior of weak sandstone at different time scales.The instantaneous behavior of this material is characterized by the Drucker-Prager elastoplastic model,while the time-dependent deformation is described in terms of the microstructure evolution.This evolution is numerically simulated by progressive degradation of the elastic modulus and failure strength of the material.The proposed model is used to simulate the instantaneous triaxial compression and the multi-loading creep tests.Generally,good concordance is obtained between numerical simulations and experimental data.The proposed model is capable of describing the main features of these rocks,particularly irreversible deformations,pressure dependency,volumetric transition between compaction and dilatancy,and creep behavior.展开更多
基金Project(11102219) supported by the National Natural Science Foundation of ChinaProject(2013CB036405) supported by the National Basic Research Program of China
文摘The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yielding criterion of rock mass. Damage factors are proposed to account for degradation of the material parameters to reflect the degree of strain softening. The surrounding rock mass around the cavity is divided into three regions: elastic region, strain softening region and residual state region. The analytical solutions of stress, strain, displacement and radius of each region are obtained. The effects of the strain softening and shear dilatancy behavior on the results are investigated with parametric studies. The results show that the radii of the residual state region and strain softening region in the surrounding rock mass with higher damage degree are larger. The radii of the residual state region and strain softening region are 1-2 times and 1.5-3 times of the cavity radius, respectively. The radial and tangential stresses decrease with the increase of the damage factor. The displacement of the cavity wall for the case with maximum plastic bulk strain is nearly twice than that with no dilation. Rock mass moves more toward the center for the case with larger damage factor and shear dilation. The area of the plastic region is larger when the damage factors are considered. The displacements in the surrounding rock mass increase with the increase of the damage factors and shear dilation factors. The solutions can be applied to the stability analysis and support design of the underground excavation.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.
基金Project(11PJ1405700) supported by Pujiang Talent Plan of Shanghai,ChinaProject(41002091) supported by the National Natural Science Foundation of ChinaProject(PIAP-GA-2009-230638) supported by the European Community through the Program "People"
文摘The influence of different features of natural soft clays,namely anisotropy,destructuration and viscosity,on modelling the time-dependent behaviour of Murro embankment was investigated.The newly developed elasto-viscoplastic models were enhanced for determining viscosity parameters in a straightforward way and adopted for the finite element analysis.The same set of common parameters determined from conventional triaxial and oedometer tests was employed for all models,with additional parameters required for representing different soil features.The finite element predictions by using models coupled with BIOT's consolidation theory were compared with each other and with field data for settlement,horizontal displacement and excess pore pressures.In addition,the stress paths under the embankment loading were also compared with each other to improve the understanding of the effect of different soil features.All simulations demonstrate that all three features significantly influence the predictions.As a consequence,accounting for soil features needs to be carefully considered when they are applied to a construction site.
文摘Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was presented, which was independent of stress history and stress paths. The proposed model was related to an isotropically work-hardening and softening, non-associated and elasto-plastic material description. It is shown that the constitutive modeling, the inherent and stress system-induced cross-anisotropic elasticity is also considered. The constitutive model is capable of simulating the effects on the deformation characteristics of stress history and stress path, pressure level and anisotropic strength.
基金Project(50825403) supported by the National Science Fund for Distinguished Young ScholarsProject(2010CB732003) supported by the National Key Basic Research Program of ChinaProject(51021001) supported by the Science Fund for Creative Research Group of the National Natural Science Foundation of China
文摘Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification.
基金Projects(cstc2012jjA0510,cstc2013jcyjA30014)supported by Chongqing Natural Science Foundation in ChinaProject(CDJZR12200011)supported by the Fundamental Research Funds for the Central Universities in China+1 种基金Project(KJTD201305)supported by the Innovation Team Building Programs of Chongqing Universities in ChinaProject supported by the Scientific Research Foundation for the Returned Oversea Chinese Scholars
文摘A footing may get an eccentric load caused by earthquake or wind, thus the bearing capacity of footing subjected to eccentric load become a fundamental geotechnical problem. The conventional limit equilibrium method used for this problem usually evaluates the material properties only by its final strength. But the classical finite element method(FEM) does not necessarily provide a clear collapse mechanism associated with the yield condition of elements. To overcome these defects, a numerical procedure is proposed to create an explicit collapse mode combining a modified smeared shear band approach with a modified initial stress method. To understand the practical performance of sand foundation and verify the performance of the proposed procedure applied to the practical problems, the computing results were compared with the laboratory model tests results and some conventional solutions. Furthermore, because the proposed numerical procedure employs a simple elasto-plastic model which requires a small number of soil parameters, it may be applied directly to practical design works.
基金Project(2011CB013800)supported by the National Basic Research Program of ChinaProject(10672063)supported by the National Natural Science Foundation of ChinaProject(Y201119)supported by the Hubei Province Key Laboratory of Systems Science in Metallurgical Process,China
文摘In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃
文摘A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.
基金Project(2006BAJ03A03)supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period of China
文摘The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.
基金Project(20110094110002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(200801014) supported by the Ministry of Water Resources of ChinaProject(50825901) supported by the National Natural Science Foundation of China
文摘The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under condition of mixed soil slurry (bentonite mixed with cement grout).For comparison,the interfaces both without slurry and with bentonite slurry were analyzed.The experimental results show that different slurries exert much influence on the strength and deformation of soil/structure interface.Under mixed soil slurry,strain softening and shear dilatation are observed,while shear dilatation appears under the small normal stress of the interface without slurry,and shear contraction is significant under the condition of the bentonite slurry.The thickness of the interface was determined by analyzing the disturbed height of the sample with both simple shear test and particle flow code (PFC).An elasto-plastic constitutive model incorporating strain softening and dilatancy for thin layer element of interface was formulated in the framework of generalized potential theory.The relation curves of shear stress and shear strain,as well as the relation curves of normal strain and shear strain,were fitted by a piecewise function composed by hyperbolic functions and resembling normal functions.The entire model parameters can be identified by tests.The new model is verified by comparing the measured data of indoor cut-off wall model tests with the predictions from finite element method (FEM).The FEM results indicate that the stress of wall calculated by using Goodman element is too large,and the maximum deviation between the test data and prediction is about 45%.While the prediction from the proposed model is close to the measured data,and the error is generally less than 10%.
基金Projects(41372285,41272317,51278449,51238009)supported by the National Natural Science Foundation of ChinaProject(20110073120012)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(PIAPP-GA2011-286397)supported by the European Program CREEP
文摘This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-dependency of preconsolidation pressure. By comparing the rate-dependency formulation with the creep based formulation, the relationship between rate-dependency and creep behaviors is firstly described. The rate-dependency based formulation is then extended to derive an analytical solution for the stress relaxation behavior with defining a stress relaxation coefficient. Based on this, the relationship between the rate-dependency coefficient and the stress relaxation coefficient is derived. Therefore, the uniqueness between behaviors of rate-dependency, creep and stress relaxation with their key parameters is obtained. The uniqueness is finally validated by comparing the simulated rate-dependency of preconsolidation pressure, the estimated values of secondary compression coefficient and simulations of stress relaxation tests with test results on both reconstituted Illite and Berthierville clay.
基金Project(51409261)supported by the National Natural Science Foundation of ChinaProjects(ZR2014EEQ014)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(16CX05002A,15CX05039A)supported by the Fundamental Research Funds for the Central Universities of China
文摘A unified constitutive model is proposed to describe the mechanical behavior of weak sandstone at different time scales.The instantaneous behavior of this material is characterized by the Drucker-Prager elastoplastic model,while the time-dependent deformation is described in terms of the microstructure evolution.This evolution is numerically simulated by progressive degradation of the elastic modulus and failure strength of the material.The proposed model is used to simulate the instantaneous triaxial compression and the multi-loading creep tests.Generally,good concordance is obtained between numerical simulations and experimental data.The proposed model is capable of describing the main features of these rocks,particularly irreversible deformations,pressure dependency,volumetric transition between compaction and dilatancy,and creep behavior.