期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于弹−塑性变形的含瓦斯煤体渗透率动态演化模型 被引量:7
1
作者 龙航 林海飞 +3 位作者 马东民 李树刚 季鹏飞 白杨 《煤炭学报》 EI CAS CSCD 北大核心 2024年第9期3859-3871,共13页
煤体渗透率演化特征的研究对于合理布置煤层瓦斯抽采参数、提高瓦斯抽采产量具有十分重要意义。为研究不同煤体应力及瓦斯压力对渗透率的影响,开展了瓦斯吸附扩散与受载煤体变形实验,建立了受载煤体分段渗透率动态演化模型,结合实验测... 煤体渗透率演化特征的研究对于合理布置煤层瓦斯抽采参数、提高瓦斯抽采产量具有十分重要意义。为研究不同煤体应力及瓦斯压力对渗透率的影响,开展了瓦斯吸附扩散与受载煤体变形实验,建立了受载煤体分段渗透率动态演化模型,结合实验测试结果对所建立模型的合理性进行验证。研究结果表明:瓦斯吸附量及煤体变形量均随气体压力增大呈Langmuir型变化规律,煤体瓦斯动扩散系数随时间变化呈指数衰减趋势;随着瓦斯压力降低,受载煤体膨胀变形量逐渐减小,渗透率逐渐增大,受载煤体渗透率及膨胀变形量均随煤体应力增大而逐渐降低,应力加载煤体渗透率整体呈现“V”形变化规律,应力峰值处煤体渗透率最小;所建立的煤体渗透率模型中,考虑了瓦斯吸附引起的基质与裂隙变形耦合作用、基质瓦斯动态扩散作用及基质与裂隙物质交换作用;利用实验结果对所建立煤体分段渗透率模型的合理性进行验证,基于弹性变形的煤体渗透率模型能够很好反映出煤体弹性变形阶段的渗透率演化特征,实验范围内,煤体渗透率实验测试与数值模拟结果绝对误差为−0.135×10^(−15)~0.296×10^(−15)m^(2),由于渗流引起的煤体体积应变绝对误差为−0.327×10^(−5)~2.026×10^(−5);考虑塑性变形的煤体渗透率模型也可以反映出煤体应力峰后渗透率变化规律,实验测试结果与数值计算结果的绝对误差为−0.435×10^(−15)~0.997×10^(−15)m^(2)。 展开更多
关键词 受载煤体 渗透率模型 吸附膨胀 瓦斯动态扩散 弹−塑性变形
在线阅读 下载PDF
Forming and Springback Prediction of Strips Under Multi-square Punch Concave Forming Process Considering Partial-unloading Effects
2
作者 LIANG Qi-yu ZHANG Long ZHU Ling 《船舶力学》 EI CSCD 北大核心 2024年第12期1953-1969,共17页
To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are con... To further investigate the forming mechanism and springback characteristics of strips under multi-square punch forming (MSPF) considering partial-unloading effects, a series of concave form ing tests of strips are conducted on the MSPF machine. This paper aims to reveal the physical mecha nism of the elastic-plastic deformation in the MSPF process considering the effect of the forming ap proaches, and derive appropriate mathematical interpretations. The theoretical model is firstly estab lished to analyse the concave forming mechanism and springback characteristics of the strip, and its accuracy is then validated by experimental data. The forming history and load evolutions are depicted to explore the required forming capacity through the proposed analytical method. Besides, the paramet ric studies are carried out to discuss their effects on the springback of the strip. The results suggest that the deformation paths of the strip are influenced by the forming approach, and the springback of the strip in convex forming is larger than that in concave forming. 展开更多
关键词 multi-square punch forming(MSPF) follower load elastic-plastic deformation partial unloading springback prediction
在线阅读 下载PDF
Mechanical behavior and deformation mechanism of ballast bed with various fouling materials 被引量:9
3
作者 ZHANG Zhi-hai XIAO Hong +2 位作者 WANG Meng LIU Guang-peng WANG Hao-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2857-2874,共18页
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope... In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance. 展开更多
关键词 ballasted track fouling material discrete element method contact force bond elastic-plastic deformation
在线阅读 下载PDF
Effects of axial cyclic loading at constant confining pressures on deformational characteristics of anisotropic argillite 被引量:2
4
作者 张久长 周苏华 +1 位作者 方理刚 许湘华 《Journal of Central South University》 SCIE EI CAS 2013年第3期799-811,共13页
Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transv... Triaxial cyclic loading tests have been performed to assess the influence of plastic deformation on inelastic deformational properties of anisotropic argillite with bedding planes which is regarded as a kind of transversely isotropic media.Considering argillite's anisotropy and inelastic deformational properties,theoretical formulae for calculating oriented elastic parameters were deduced by the unloading curves,which can be better fitted for the description of its elasticity than loading curves.Test results indicate that with the growth of accumulated plastic,strain,the apparent elastic modulus of argillite decreases in a form of exponential decay function,whereas the apparent Poisson ratio increase in a form of power equation.A ratio of unloading recoverable strain to the total strain increment occurred during a loading cycle is defined to illustrate the characteristic relations between anisotropic coupled elasto-plastic deformation and plastic strain.It is significant to observe that high stress level and plastic history have an inhibiting effect on argillite anisotropy. 展开更多
关键词 anisotropic argillite coupled elasto-plasticity cyclic loading tests elastic parameters plastic strain
在线阅读 下载PDF
Deformation behaviors of 21-6-9 stainless steel tube numerical control bending under different friction conditions 被引量:10
5
作者 方军 鲁世强 +1 位作者 王克鲁 姚正军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2864-2874,共11页
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p... For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending. 展开更多
关键词 21-6-9 stainless steel tube FRICTION deformation behaviors numerical control bending finite element simulation
在线阅读 下载PDF
An improved hypoplastic constitutive model of rockfill considering effect of stress path 被引量:4
6
作者 相彪 张宗亮 迟世春 《Journal of Central South University》 SCIE EI CAS 2009年第6期1006-1013,共8页
An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition ... An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill. 展开更多
关键词 HYPOPLASTICITY constitutive model stress path triaxial drained test ROCKFILL
在线阅读 下载PDF
Elastoplastic model for discontinuous shear deformation of deep rock mass 被引量:3
7
作者 王明洋 范鹏贤 +1 位作者 钱七虎 邓宏见 《Journal of Central South University》 SCIE EI CAS 2011年第3期866-873,共8页
Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechan... Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification. 展开更多
关键词 deep rock mass discontinuous deformation elasto-plastic model
在线阅读 下载PDF
Slope analysis based on local strength reduction method and variable-modulus elasto-plastic model 被引量:5
8
作者 杨光华 钟志辉 +3 位作者 傅旭东 张玉成 温勇 张明飞 《Journal of Central South University》 SCIE EI CAS 2014年第5期2041-2050,共10页
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How... Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method. 展开更多
关键词 slope stability local strength reduction method variable-modulus elasto-plastic model in-situ test
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部