期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
基于Soft均值滤波的鲁棒主成分分析算法
1
作者 吴沁停 王新景 +3 位作者 潘金艳 张海峰 邵桂芳 高云龙 《光学精密工程》 北大核心 2025年第6期961-978,共18页
降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群... 降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。 展开更多
关键词 降维 无监督特征提取 成分分析 Soft均值滤波 鲁棒性
在线阅读 下载PDF
基于鲁棒性主成分分析的低照度图像增强算法 被引量:3
2
作者 胡乘其 王书朋 王瑜婧 《计算机应用与软件》 北大核心 2024年第2期244-249,共6页
由于低照度图像对比度和信噪比低,传统图像增强算法在提高图像对比度的同时容易造成噪声放大。针对该问题,提出基于鲁棒性主成分分析(RPCA)的低照度图像增强算法。算法依据Retinex理论将图像分解为照度分量和反射分量,使用伽马矫正对照... 由于低照度图像对比度和信噪比低,传统图像增强算法在提高图像对比度的同时容易造成噪声放大。针对该问题,提出基于鲁棒性主成分分析(RPCA)的低照度图像增强算法。算法依据Retinex理论将图像分解为照度分量和反射分量,使用伽马矫正对照度分量进行增强。将增强后的照度分量与反射分量合成为最终的增强图像。其中图像分解采用RPCA方法实现,因为该方法可以有效地将照度信息与噪声分离,从而避免增强照度分量时放大噪声。为了提高计算效率,算法采用非精确增广拉格朗日乘子法(Inexect-ALM,IALM)求解RPCA分解问题。实验结果表明,该算法在增强图像对比度的同时避免了放大噪声,其主观评价与客观指标都优于几种经典的图像增强算法,有较好的视觉效果和较低的计算复杂度。 展开更多
关键词 图像增强 低照度图像 RETINEX理论 鲁棒性成分分析
在线阅读 下载PDF
低秩鲁棒性主成分分析的遮挡人脸识别 被引量:13
3
作者 唐娴 黄军伟 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第4期460-465,共6页
为了提高遮挡人脸的识别效果,提出了低秩鲁棒性主成分分析的遮挡人脸识别算法。首先采集人脸图像,并进行相应的预处理,然后采用鲁棒性主成分分析对人脸样本进行分解,并建立人脸图像训练样本和测试样本的低秩矩阵和误差矩阵,最后根据误... 为了提高遮挡人脸的识别效果,提出了低秩鲁棒性主成分分析的遮挡人脸识别算法。首先采集人脸图像,并进行相应的预处理,然后采用鲁棒性主成分分析对人脸样本进行分解,并建立人脸图像训练样本和测试样本的低秩矩阵和误差矩阵,最后根据误差矩阵对人脸识别进行加权和识别,并采用经典人脸数据库进行仿真实验,结果表明,低秩鲁棒性主成分分析的遮挡人脸识别率得到显著提高,降低了遮挡人脸的误识率,具有更优的鲁棒性。 展开更多
关键词 鲁棒性成分分析 模式识别 遮挡人脸 低秩映射 误识率
在线阅读 下载PDF
基于改进增广拉格朗日乘子法的鲁棒性主成分分析 被引量:7
4
作者 杨剑哲 孙巧榆 +3 位作者 王君 程丹松 金野 石大明 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2015年第11期27-33,共7页
针对增广的拉格朗日乘子法在求解鲁棒性主成分分析,特别是当数据同时受到稀疏噪声和高斯噪声的干扰时,计算精度会降低,数据降维去噪任务不能很好完成的情况,提出改进的增广拉格朗日乘子法来解决上述问题.一是用基于最优乘子初始化的改... 针对增广的拉格朗日乘子法在求解鲁棒性主成分分析,特别是当数据同时受到稀疏噪声和高斯噪声的干扰时,计算精度会降低,数据降维去噪任务不能很好完成的情况,提出改进的增广拉格朗日乘子法来解决上述问题.一是用基于最优乘子初始化的改进增广拉格朗日乘子法来提高算法的计算精度,二是针对鲁棒性主成分分析,提出一个带高斯噪声的凸优化模型.实验结果表明,本文提出的最优乘子初始化改进算法赋予增广的拉格朗日乘子法一个最优的拉格朗日乘子,从而提高算法的计算精度,而凸优化模型能够清晰地将高斯噪声和稀疏噪声从数据矩阵中分离出去,进而提高数据对高斯噪声的鲁棒性. 展开更多
关键词 鲁棒性成分分析 拉格朗日乘子的最优初始化 增广的拉格朗日乘子法 凸优化 高斯噪声
在线阅读 下载PDF
基于多线性主成分分析的支持高阶张量机 被引量:3
5
作者 曾奎 何丽芳 杨晓伟 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期219-227,共9页
为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法... 为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法,而支持高阶张量机算法是张量分类算法中最有效的方法之一.考虑到张量的高维性和高冗余性,本文提出基于多线性主成分分析的支持高阶张量机分类算法(Multilinear Principle Component Analysis Based Support High-Order Tensor Machine,MPCA+SHTM).该算法首先利用多线性主成分分析对张量进行降维,然后利用支持高阶张量机对降维后的张量进行学习.在12个张量数据集上的实验表明:MPCA+SHTM在保持测试精度的情况下有效地降低了SHTM的计算时间. 展开更多
关键词 支持高阶张量 多线性成分分析 张量分解 交替投影张量 support HIGHER-ORDER TENSOR machine(SHTM) MULTILINEAR PRINCIPLE component analysis(MPCA)
在线阅读 下载PDF
张量鲁棒主成分分析及其在故障诊断中的应用 被引量:1
6
作者 孙卫强 谭春隆 易灿灿 《机械设计与制造》 北大核心 2019年第10期119-122,共4页
通常采集到的机械设备振动信号具有典型的非线性、非平稳特性,并且含有强背景噪声。一种新的张量鲁棒主成分分析方法被提出,该方法假设张量数据能被分解为代表信号特征的低秩成分和代表噪声的稀疏成分的叠加。首先将采集的一维信号重构... 通常采集到的机械设备振动信号具有典型的非线性、非平稳特性,并且含有强背景噪声。一种新的张量鲁棒主成分分析方法被提出,该方法假设张量数据能被分解为代表信号特征的低秩成分和代表噪声的稀疏成分的叠加。首先将采集的一维信号重构到三维张量空间,然后通过求解一个凸优化问题来提取张量数据的低秩特征成分,从而实现信号的特征提取。该问题实质是由Tucker分解模型相关的Tucker秩凸包络的核范数和稀疏成分范数的联合最小化问题。分别通过仿真实验和实测的轴承外圈故障信号进行分析,结果表明提出的方法能成功的提取故障特征信息。 展开更多
关键词 张量 Tucker分解 鲁棒成分分析 凸优化 特征提取
在线阅读 下载PDF
鲁棒的稀疏Lp-模主成分分析 被引量:8
7
作者 李春娜 陈伟杰 邵元海 《自动化学报》 EI CSCD 北大核心 2017年第1期142-151,共10页
主成分分析(Principle component analysis,PCA)是一种被广泛应用的降维方法.然而经典PCA的构造基于L2-模导致了其对离群点和噪声点敏感,同时经典PCA也不具备稀疏性的特点.针对此问题,本文提出基于Lp-模的稀疏主成分分析降维方法 (Lp SP... 主成分分析(Principle component analysis,PCA)是一种被广泛应用的降维方法.然而经典PCA的构造基于L2-模导致了其对离群点和噪声点敏感,同时经典PCA也不具备稀疏性的特点.针对此问题,本文提出基于Lp-模的稀疏主成分分析降维方法 (Lp SPCA).Lp SPCA通过极大化带有稀疏正则项的Lp-模样本方差,使得其在降维的同时保证了稀疏性和鲁棒性.Lp SPCA可用简单的迭代算法求解,并且当p≥1时该算法的收敛性可在理论上保证.此外通过选择不同的p值,Lp SPCA可应用于更广泛的数据类型.人工数据及人脸数据上的实验结果表明,本文所提出的Lp SPCA不仅具有较好的降维效果,并且具有较强的抗噪能力. 展开更多
关键词 成分分析 稀疏性 鲁棒性 降维 Lp-模
在线阅读 下载PDF
广义余弦二维主成分分析 被引量:7
8
作者 王肖锋 陆程昊 +1 位作者 郦金祥 刘军 《自动化学报》 EI CAS CSCD 北大核心 2022年第11期2836-2851,共16页
主成分分析(Principal component analysis,PCA)是一种广泛应用的特征提取与数据降维方法,其目标函数采用L2范数距离度量方式,对离群数据及噪声敏感.而L1范数虽然能抑制离群数据的影响,但其重构误差并不能得到有效控制.针对上述问题,综... 主成分分析(Principal component analysis,PCA)是一种广泛应用的特征提取与数据降维方法,其目标函数采用L2范数距离度量方式,对离群数据及噪声敏感.而L1范数虽然能抑制离群数据的影响,但其重构误差并不能得到有效控制.针对上述问题,综合考虑投影距离最大及重构误差较小的目标优化问题,提出一种广义余弦模型的目标函数.通过极大化矩阵行向量的投影距离与其可调幂的2范数之间的比值,使得其在数据降维的同时提高了鲁棒性.在此基础上提出广义余弦二维主成分分析(Generalized cosine two dimensional PCA,GC2DPCA),给出了其迭代贪婪的求解算法,并对其收敛性及正交性进行理论证明.通过选择不同的可调幂参数,GC2DPCA可应用于广泛的含离群数据的鲁棒降维.人工数据集及多个人脸数据集的实验结果表明,本文算法在重构误差、相关性及分类率等性能方面均得到了提升,具有较强的抗噪能力. 展开更多
关键词 二维成分分析 广义余弦模型 鲁棒性 范数 降维
在线阅读 下载PDF
基于误差模型的自适应鲁棒主成分分析 被引量:1
9
作者 王松 夏绍玮 《自动化学报》 EI CSCD 北大核心 1999年第4期528-531,共4页
研究了改善主成分分析(PCA)算法鲁棒性的一种实现途径.通过对误差函数的建模分析,得到一种改进的目标函数.提出一种新的在线自适应式的鲁棒PCA运算规则.该方法基于单层线性神经网络(NN)结构,但是权值的训练算法是非线... 研究了改善主成分分析(PCA)算法鲁棒性的一种实现途径.通过对误差函数的建模分析,得到一种改进的目标函数.提出一种新的在线自适应式的鲁棒PCA运算规则.该方法基于单层线性神经网络(NN)结构,但是权值的训练算法是非线性的.从而在迭代训练中对“劣点”样本加以适当处理来排除对运算精度和收敛性的影响. 展开更多
关键词 成分分析 鲁棒性 误差模型 协方差分析
在线阅读 下载PDF
基于非相关多线性主成分分析的人脸识别算法 被引量:5
10
作者 杨凌云 秦岸 《无线电通信技术》 2016年第1期73-75,98,共4页
针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至... 针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至向量的过程,可直接获取原张量数据的绝大部分非相关特征,提取的特征再通过经典算法LDA处理。利用AT&T人脸数据库对该算法进行了实验,实验数据分析显示该算法优于其他同类算法。 展开更多
关键词 张量 非相关多线性成分分析(UMPCA) 线性判别分析(LDA) 特征提取
在线阅读 下载PDF
基于鲁棒主成分分析的Canny边缘检测算法 被引量:19
11
作者 牛发发 陈莉 +1 位作者 张永新 李青 《计算机应用》 CSCD 北大核心 2014年第6期1727-1730,共4页
为提高图像边缘检测的准确性和鲁棒性,提出一种基于鲁棒主成分分析(RPCA)的Canny边缘检测算法。该算法对图像进行RPCA分解得到图像的主成分和稀疏成分,利用Canny算子对主成分进行边缘检测,从而实现对图像的边缘检测。该算法将图像的边... 为提高图像边缘检测的准确性和鲁棒性,提出一种基于鲁棒主成分分析(RPCA)的Canny边缘检测算法。该算法对图像进行RPCA分解得到图像的主成分和稀疏成分,利用Canny算子对主成分进行边缘检测,从而实现对图像的边缘检测。该算法将图像的边缘检测问题转化为图像主成分的边缘检测问题,消除了图像信息中"污点"对检测结果的干扰,抑制了噪声。仿真实验结果表明,该算法在边缘检测的准确性和鲁棒性方面优于Log边缘检测算法、Canny边缘检测算法和Susan边缘检测算法方法。 展开更多
关键词 鲁棒成分分析 边缘检测 CANNY算子 鲁棒性 成分
在线阅读 下载PDF
鲁棒自适应概率加权主成分分析 被引量:6
12
作者 高云龙 罗斯哲 +2 位作者 潘金艳 陈柏华 张逸松 《自动化学报》 EI CAS CSCD 北大核心 2021年第4期825-838,共14页
主成分分析(Principal component analysis,PCA)是处理高维数据的重要方法.近年来,基于各种范数的PCA模型得到广泛研究,用以提高PCA对噪声的鲁棒性.但是这些算法一方面没有考虑重建误差和投影数据描述方差之间的关系;另一方面也缺少确... 主成分分析(Principal component analysis,PCA)是处理高维数据的重要方法.近年来,基于各种范数的PCA模型得到广泛研究,用以提高PCA对噪声的鲁棒性.但是这些算法一方面没有考虑重建误差和投影数据描述方差之间的关系;另一方面也缺少确定样本点可靠性(不确定性)的度量机制.针对这些问题,本文提出一种新的鲁棒PCA模型.首先采用L_(2,p)模来度量重建误差和投影数据的描述方差.基于重建误差和描述方差之间的关系建立自适应概率误差极小化模型,据此计算主成分对于数据描述的不确定性,进而提出了鲁棒自适应概率加权PCA模型(RPCA-PW).此外,本文还设计了对应的求解优化方案.对人工数据集、UCI数据集和人脸数据库的实验结果表明,RPCA-PW在整体上优于其他PCA算法. 展开更多
关键词 成分分析 加权成分分析 维数约简 鲁棒性
在线阅读 下载PDF
基于改进张量链分解的多聚类算法
13
作者 张宏俊 张泽宇 +2 位作者 张颖娇 叶昊 潘高军 《电信科学》 北大核心 2025年第6期103-120,共18页
随着大数据时代的到来,高阶数据的有效表示和分析成为一项重大挑战。基于此,聚焦于张量分解技术在多聚类算法中的应用,特别是针对大型多源异构数据集的处理,深入研究并改进了张量链(tensor train,TT)分解方法,通过引入新的优化策略,显... 随着大数据时代的到来,高阶数据的有效表示和分析成为一项重大挑战。基于此,聚焦于张量分解技术在多聚类算法中的应用,特别是针对大型多源异构数据集的处理,深入研究并改进了张量链(tensor train,TT)分解方法,通过引入新的优化策略,显著提高了其在多聚类任务中的性能。创新主要体现在两个方面:一是提出了一种新的张量分解框架,该框架通过优化目标函数,有效降低了存储成本并提高了计算效率;二是将改进的张量分解技术应用于3种主要的多聚类算法中,包括自加权多视图聚类(self-weighted multi-view clustering,SwMC)、潜在多视图子空间聚类(latent multi-view subspace clustering,LMSC)和具有完整性感知相似性的多视图子空间聚类(multi-view subspace clustering with intactness-aware similarity,MSC IAS),显著提升了聚类的准确性和效率。为了验证方法的有效性,在7个真实的数据集上进行了全面的实验评估,包括准确性(accuracy,ACC)、归一化互信息(normalized mutual information,NMI)和纯度等3个指标。实验结果表明,所提出的方法在提取有意义的模式和提高聚类性能方面具有显著优势。 展开更多
关键词 张量 多聚类算法 张量分解 多源异构数据 成分分析
在线阅读 下载PDF
基于近似零范数的稀疏核主成成分算法 被引量:3
14
作者 谭龙 何改云 +1 位作者 潘静 庞彦伟 《电子测量技术》 2013年第9期27-30,共4页
核主成成分分析(KPCA)是一种有效的数据降维方法,其降维过程是计算待降维样本与所有训练样本核函数的线性叠加,所以其计算量依赖于训练样本的大小,致使降维效率很低。为了提高KPCA降维效率,提出利用近似的零范数对叠加系数施加稀疏约束... 核主成成分分析(KPCA)是一种有效的数据降维方法,其降维过程是计算待降维样本与所有训练样本核函数的线性叠加,所以其计算量依赖于训练样本的大小,致使降维效率很低。为了提高KPCA降维效率,提出利用近似的零范数对叠加系数施加稀疏约束,能够得到稀疏性很好的系数。降维时,去除大量系数为零的训练样本,所以能够显著提高降维速度。通过实验还发现该算法对离群点具有不错的鲁棒性,换句话说当训练人脸数据库中加入非人脸图像时能够较好的克服这些非人脸图像的影响。 展开更多
关键词 成分分析 近似的零范数 稀疏约束 鲁棒性
在线阅读 下载PDF
基于L_1-范数的鲁棒稀疏的张量PCA人脸图像分析
15
作者 唐肝翌 卢桂馥 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期31-39,共9页
张量主成分分析(Tensor Principal Component Analysis,TPCA)是主成分分析(Principal Component Analysis,PCA)在多维空间上的推广,能充分利用图像/视频的空间关联,在图像分析和视频处理中扮演了重要的角色.传统的张量PCA方法提取的特... 张量主成分分析(Tensor Principal Component Analysis,TPCA)是主成分分析(Principal Component Analysis,PCA)在多维空间上的推广,能充分利用图像/视频的空间关联,在图像分析和视频处理中扮演了重要的角色.传统的张量PCA方法提取的特征向量是非稀疏的,这使得其很难进行解释.近年来出现了众多稀疏PCA方法,能提取只包含少量非零元的特征.把稀疏特征提取引入到张量分析,提出一种鲁棒稀疏的张量PCA方法(TPCAL1S).首先,设计了能实现稀疏特征提取的目标函数.一方面,用L1范数代替Frobenius-范数,使得算法对异常数据更加鲁棒;另一方面,在目标函数中引入弹性网,联合使用Lasso与Ridge惩罚因子来实现稀疏化,增强了算法的语义解释性.然后,设计了一种基于二阶张量的投影矩阵交替求解算法,二阶张量便于数学描述,也易于推广到更高阶张量.此求解算法分为两个步骤(V,U分别表示左投影矩阵和右投影矩阵),先固定U优化V,再固定V的值优化U,两个步骤反复交替执行,直到收敛.每个步骤都采用贪心算法以迭代的方式逐个特征提取以求得U或V.最后,对迭代过程的单调性做了理论证明.基于ORL,Yale和Feret库,将TPCA-L1S应用于人脸图像分析并与其他常见方法作比较,实验结果验证了该模型的有效性. 展开更多
关键词 成分分析(PCA) 张量 稀疏模型 L1-范数 鲁棒
在线阅读 下载PDF
基于线性插值的张量步态识别算法 被引量:11
16
作者 贲晛烨 安实 +1 位作者 王健 王科俊 《计算机应用研究》 CSCD 北大核心 2012年第1期355-358,共4页
提出一种新的基于线性插值的张量步态识别算法。为了能将测试步态序列与注册的相匹配,必须使测试序列的维数与注册的一致,首先将一个周期内的步态帧经相邻帧线性插值归一到一定数目,那么单个的步态样本表现成张量的形式。张量分析采用... 提出一种新的基于线性插值的张量步态识别算法。为了能将测试步态序列与注册的相匹配,必须使测试序列的维数与注册的一致,首先将一个周期内的步态帧经相邻帧线性插值归一到一定数目,那么单个的步态样本表现成张量的形式。张量分析采用多重线性主成分分析算法,在CASIA(B)步态数据库上实验,确定单个步态张量选择一个周期比半个周期更有效。该方法得到了令人鼓舞的识别效果。 展开更多
关键词 步态识别 线性插值 张量表达 多重线性成分分析
在线阅读 下载PDF
低质量监控图像鲁棒性人脸超分辨率算法 被引量:4
17
作者 兰诚栋 胡瑞敏 +1 位作者 卢涛 韩镇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第9期1474-1480,共7页
由于人对图像结构信息的理解对于像素值的噪声干扰具有极强的鲁棒功能,为了增强传统算法针对低质量监控图像的鲁棒性,提出一种基于人工形状语义模型的人脸超分辨率算法.该算法将形状描述成一系列面部特征点的组合,通过人工获取人脸图像... 由于人对图像结构信息的理解对于像素值的噪声干扰具有极强的鲁棒功能,为了增强传统算法针对低质量监控图像的鲁棒性,提出一种基于人工形状语义模型的人脸超分辨率算法.该算法将形状描述成一系列面部特征点的组合,通过人工获取人脸图像形状语义信息,利用形状样本库构建超分辨率代价函数的正则约束项;将图像与形状的系数相关性用于统一重建误差项与形状正则项的变量,并将最速下降法用于优化求解.仿真和实际图像实验结果都表明,在主客观质量上,文中算法的性能都优于传统算法. 展开更多
关键词 人脸超分辨率 幻觉脸 动形状模型 成分分析 鲁棒性超分辨率
在线阅读 下载PDF
基于张量的2D-PCA人脸识别算法 被引量:7
18
作者 叶学义 王大安 +2 位作者 宦天枢 夏经文 顾亚风 《计算机工程与应用》 CSCD 北大核心 2017年第6期1-6,共6页
人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值... 人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值对应的特征向量组成的将张量样本投影到低维子空间的投影矩阵,并构造交替最小二乘法的迭代过程对矩阵进行优化得到最优投影矩阵,使得投影后的样本间的距离尽可能得大,以达到最佳分类识别的效果。Georgia Tech彩色人脸库的测试结果表明,与2D-PCA方法相比,识别正确率提升了5.53%,同时训练时间降低了78.1%。 展开更多
关键词 人脸识别 色彩信息 二维成分分析(2D-PCA) 张量
在线阅读 下载PDF
基于用户近邻的N维张量分解推荐算法 被引量:2
19
作者 陈健美 孙亚军 《计算机工程》 CAS CSCD 北大核心 2017年第11期193-197,共5页
基于张量分解的推荐算法存在推荐精度较低和数据稀疏的问题。为此,在传统的张量分解模型基础上,引入用户近邻信息,提出一种新的N维张量分解算法。利用上下文感知信息,把隐式反馈信息作为张量的第3维度,以建立N维张量分解模型,为进一步... 基于张量分解的推荐算法存在推荐精度较低和数据稀疏的问题。为此,在传统的张量分解模型基础上,引入用户近邻信息,提出一种新的N维张量分解算法。利用上下文感知信息,把隐式反馈信息作为张量的第3维度,以建立N维张量分解模型,为进一步提高推荐质量,加入用户近邻信息来优化N维张量分解模型,以提高张量分解推荐算法的准确率。实验结果表明,融合用户近邻的张量分解推荐算法比传统的张量分解算法具有更好的准确性,能有效解决稀疏性和准确性问题。 展开更多
关键词 协同过滤算法 反馈信息 成分分析 张量分解 推荐算法
在线阅读 下载PDF
基于张量核范数与3D全变分的背景减除 被引量:2
20
作者 陈利霞 班颖 王学文 《计算机应用》 CSCD 北大核心 2020年第9期2737-2742,共6页
针对常用背景减除方法忽略前景时空连续性的问题,以及动态背景对前景提取的干扰问题,基于张量鲁棒主成分分析(TRPCA)提出了一种改进的背景减除模型。该模型利用改进的张量核范数对背景进行约束,加强了背景的低秩性,保留了视频的空间信息... 针对常用背景减除方法忽略前景时空连续性的问题,以及动态背景对前景提取的干扰问题,基于张量鲁棒主成分分析(TRPCA)提出了一种改进的背景减除模型。该模型利用改进的张量核范数对背景进行约束,加强了背景的低秩性,保留了视频的空间信息;然后用3D全变分(3D-TV)对前景进行正则化约束,考虑了目标在时空上的连续性,有效地抑制了动态背景和目标移动对前景提取造成的干扰。实验结果表明,所提算法能有效地分离视频中的前景和背景,且与高阶鲁棒主成分分析(HoRPCA)、带有新核范数的张量鲁棒主成分分析(TRPCA-TNN)和基于克罗内克基的鲁棒主成分分析(KBR-RPCA)等方法相比,综合评判指标F-measure值均处于最优或次优状态。由此可见,所提算法有效地提高了前景背景分离的准确度,抑制了复杂天气和目标移动对前景提取的干扰。 展开更多
关键词 背景减除 张量鲁棒成分分析 张量核范数 3D全变分 交替方向乘子法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部