高光谱图像目标检测作为一个研究热点在军事和民用方面的应用越来越广泛。为了能同时利用高光谱图像数据的空谱信息,本文提出一种新的基于张量表示的高光谱图像目标检测算法。算法使用CP(Canonical Polyadic)张量分解技术和张量块分解(B...高光谱图像目标检测作为一个研究热点在军事和民用方面的应用越来越广泛。为了能同时利用高光谱图像数据的空谱信息,本文提出一种新的基于张量表示的高光谱图像目标检测算法。算法使用CP(Canonical Polyadic)张量分解技术和张量块分解(Block Term Decomposition,BTD)分别对高光谱数据进行盲源分析,提取了有效的局部图像块空谱特征,建立了一个基于稀疏表示和协作表示的检测模型,针对多种类型背景复杂的场景数据进行实验,并与当前流行的目标检测算法进行比较。从可视化检测结果来看,本文算法在复杂背景和强噪声环境下,有效提取了空谱特征,对背景具有较好的抑制能力,检测的目标显著。此外,本文从接收机操作曲线(Receiver Operating Characteristic Curve,ROC)和ROC曲线下面积(Area Under Curve,AUC)等定量指标分析算法性能。以较为流行的Sandiego图像为例,在10%的虚警率下,本文算法取得90%的检测精度,AUC大于0.95。本文算法相较几种流行算法而言具有较高的检测精度,更强的鲁棒性。展开更多
现有多视角聚类算法存在:1)在学习低维表征的过程中无法准确捕获或忽略嵌入在多视角数据中的高阶信息和互补信息;2)未能准确捕获数据局部信息;3)信息捕获方法缺少对噪声点鲁棒性等问题.为解决上述问题,提出一种自适应张量奇异值收缩的...现有多视角聚类算法存在:1)在学习低维表征的过程中无法准确捕获或忽略嵌入在多视角数据中的高阶信息和互补信息;2)未能准确捕获数据局部信息;3)信息捕获方法缺少对噪声点鲁棒性等问题.为解决上述问题,提出一种自适应张量奇异值收缩的多视角聚类(multi-view clustering based on adaptive tensor singular value shrinkage,ATSVS)算法.ATSVS首先提出一种符合秩特性的张量对数行列式函数对表示张量施加低秩约束,在张量奇异值分解(tensor singular value decomposition,t-SVD)过程中能够根据奇异值自身大小进行自适应收缩,更加准确地进行张量秩估计,进而从全局角度精准捕获多视角数据的高阶信息和互补信息.然后采用一种结合稀疏表示和流形正则技术优势的l_(1,2)范数捕获数据的局部信息,并结合l_(2,1)范数对噪声施加稀疏约束,提升算法对噪声点的鲁棒性.与11个对比算法在9个数据集上的实验结果显示,ATSVS的聚类性能均优于其他对比算法.因此,ATSVS是一个能够有效处理多视角数据聚类任务的优秀算法.展开更多
卷积神经网络已在多个领域取得了优异的性能表现,然而由于其不透明的内部状态,其可解释性依然面临很大的挑战.其中一个原因是卷积神经网络以像素级特征为输入,逐层地抽取高级别特征,然而这些高层特征依然十分抽象,人类不能直观理解.为...卷积神经网络已在多个领域取得了优异的性能表现,然而由于其不透明的内部状态,其可解释性依然面临很大的挑战.其中一个原因是卷积神经网络以像素级特征为输入,逐层地抽取高级别特征,然而这些高层特征依然十分抽象,人类不能直观理解.为了解决这一问题,我们需要表征出网络中隐藏的人类可理解的语义概念.本文通过预先定义语义概念数据集(例如红色、条纹、斑点、狗),得到这些语义在网络某一层的特征图,将这些特征图作为数据,训练一个张量分类器.我们将与分界面正交的张量称为语义激活张量(Semantic Activation Tensors,SATs),每个SAT都指向对应的语义概念.相对于向量分类器,张量分类器可以保留张量数据的原始结构.在卷积网络中,每个特征图中都包含了位置信息和通道信息,如果将其简单地展开成向量形式,这会破坏其结构信息,导致最终分类精度的降低.本文使用SAT与网络梯度的内积来量化语义对分类结果的重要程度,此方法称为TSAT(Testing with SATs).例如,条纹对斑马的预测结果有多大影响.本文以图像分类网络作为解释对象,数据集选取ImageNet,在ResNet50和Inceptionv3两种网络架构上进行实验验证.最终实验结果表明,本文所采用的张量分类方法相较于传统的向量分类方法,在数据维度较大或数据不易区分的情况下,分类精度有显著的提高,且分类的稳定性也更加优秀.这从而保证了本文所推导出的语义激活张量更加准确,进一步确保了后续语义概念重要性量化的准确性.展开更多
文摘高光谱图像目标检测作为一个研究热点在军事和民用方面的应用越来越广泛。为了能同时利用高光谱图像数据的空谱信息,本文提出一种新的基于张量表示的高光谱图像目标检测算法。算法使用CP(Canonical Polyadic)张量分解技术和张量块分解(Block Term Decomposition,BTD)分别对高光谱数据进行盲源分析,提取了有效的局部图像块空谱特征,建立了一个基于稀疏表示和协作表示的检测模型,针对多种类型背景复杂的场景数据进行实验,并与当前流行的目标检测算法进行比较。从可视化检测结果来看,本文算法在复杂背景和强噪声环境下,有效提取了空谱特征,对背景具有较好的抑制能力,检测的目标显著。此外,本文从接收机操作曲线(Receiver Operating Characteristic Curve,ROC)和ROC曲线下面积(Area Under Curve,AUC)等定量指标分析算法性能。以较为流行的Sandiego图像为例,在10%的虚警率下,本文算法取得90%的检测精度,AUC大于0.95。本文算法相较几种流行算法而言具有较高的检测精度,更强的鲁棒性。
文摘现有多视角聚类算法存在:1)在学习低维表征的过程中无法准确捕获或忽略嵌入在多视角数据中的高阶信息和互补信息;2)未能准确捕获数据局部信息;3)信息捕获方法缺少对噪声点鲁棒性等问题.为解决上述问题,提出一种自适应张量奇异值收缩的多视角聚类(multi-view clustering based on adaptive tensor singular value shrinkage,ATSVS)算法.ATSVS首先提出一种符合秩特性的张量对数行列式函数对表示张量施加低秩约束,在张量奇异值分解(tensor singular value decomposition,t-SVD)过程中能够根据奇异值自身大小进行自适应收缩,更加准确地进行张量秩估计,进而从全局角度精准捕获多视角数据的高阶信息和互补信息.然后采用一种结合稀疏表示和流形正则技术优势的l_(1,2)范数捕获数据的局部信息,并结合l_(2,1)范数对噪声施加稀疏约束,提升算法对噪声点的鲁棒性.与11个对比算法在9个数据集上的实验结果显示,ATSVS的聚类性能均优于其他对比算法.因此,ATSVS是一个能够有效处理多视角数据聚类任务的优秀算法.
文摘卷积神经网络已在多个领域取得了优异的性能表现,然而由于其不透明的内部状态,其可解释性依然面临很大的挑战.其中一个原因是卷积神经网络以像素级特征为输入,逐层地抽取高级别特征,然而这些高层特征依然十分抽象,人类不能直观理解.为了解决这一问题,我们需要表征出网络中隐藏的人类可理解的语义概念.本文通过预先定义语义概念数据集(例如红色、条纹、斑点、狗),得到这些语义在网络某一层的特征图,将这些特征图作为数据,训练一个张量分类器.我们将与分界面正交的张量称为语义激活张量(Semantic Activation Tensors,SATs),每个SAT都指向对应的语义概念.相对于向量分类器,张量分类器可以保留张量数据的原始结构.在卷积网络中,每个特征图中都包含了位置信息和通道信息,如果将其简单地展开成向量形式,这会破坏其结构信息,导致最终分类精度的降低.本文使用SAT与网络梯度的内积来量化语义对分类结果的重要程度,此方法称为TSAT(Testing with SATs).例如,条纹对斑马的预测结果有多大影响.本文以图像分类网络作为解释对象,数据集选取ImageNet,在ResNet50和Inceptionv3两种网络架构上进行实验验证.最终实验结果表明,本文所采用的张量分类方法相较于传统的向量分类方法,在数据维度较大或数据不易区分的情况下,分类精度有显著的提高,且分类的稳定性也更加优秀.这从而保证了本文所推导出的语义激活张量更加准确,进一步确保了后续语义概念重要性量化的准确性.