期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于张量化图卷积网络和对比学习的多源数据表示学习模型
1
作者
龙雨菲
牟宇辰
刘晔
《计算机应用》
北大核心
2025年第5期1372-1378,共7页
针对现有多源数据表示学习模型在处理大规模复杂高维数据时存在的容易遗漏数据源间高阶关联信息和易受到噪声干扰的问题,提出一种基于张量化图卷积网络(T-GCN)和对比学习的多源数据表示学习模型(MSTGC)。首先,利用K近邻(KNN)算法和图卷...
针对现有多源数据表示学习模型在处理大规模复杂高维数据时存在的容易遗漏数据源间高阶关联信息和易受到噪声干扰的问题,提出一种基于张量化图卷积网络(T-GCN)和对比学习的多源数据表示学习模型(MSTGC)。首先,利用K近邻(KNN)算法和图卷积网络(GCN)统一多源数据维度,拼接得到张量化多源数据;其次,利用定义的张量图卷积算子实现高维图卷积运算,同时学习数据源内部信息及数据源间关联信息;最后,构建多源数据对比学习范式,通过添加基于语义一致性与标签一致性的对比约束,提升MS-TGC在处理含噪声数据时的表示学习准确率,增强模型的鲁棒性。实验结果表明,当有标签样本率为0.3时,与CONMF(Co-consensus Orthogonal Non-negative Matrix Factorization)模型相比,MS-TGC在BDGP和20newsgroup数据集上的半监督分类准确率分别提升了1.36和5.53个百分点。可见MS-TGC能够更有效地捕捉数据源间关联信息,降低噪声干扰,得到高质量多源数据表示。
展开更多
关键词
多源数据表示学习
图卷
积
神经网络
张量图卷积算子
对比学习
半监督分类
在线阅读
下载PDF
职称材料
题名
基于张量化图卷积网络和对比学习的多源数据表示学习模型
1
作者
龙雨菲
牟宇辰
刘晔
机构
华南理工大学未来技术学院
出处
《计算机应用》
北大核心
2025年第5期1372-1378,共7页
基金
国家级大学生创新创业训练计划项目(202310561173)。
文摘
针对现有多源数据表示学习模型在处理大规模复杂高维数据时存在的容易遗漏数据源间高阶关联信息和易受到噪声干扰的问题,提出一种基于张量化图卷积网络(T-GCN)和对比学习的多源数据表示学习模型(MSTGC)。首先,利用K近邻(KNN)算法和图卷积网络(GCN)统一多源数据维度,拼接得到张量化多源数据;其次,利用定义的张量图卷积算子实现高维图卷积运算,同时学习数据源内部信息及数据源间关联信息;最后,构建多源数据对比学习范式,通过添加基于语义一致性与标签一致性的对比约束,提升MS-TGC在处理含噪声数据时的表示学习准确率,增强模型的鲁棒性。实验结果表明,当有标签样本率为0.3时,与CONMF(Co-consensus Orthogonal Non-negative Matrix Factorization)模型相比,MS-TGC在BDGP和20newsgroup数据集上的半监督分类准确率分别提升了1.36和5.53个百分点。可见MS-TGC能够更有效地捕捉数据源间关联信息,降低噪声干扰,得到高质量多源数据表示。
关键词
多源数据表示学习
图卷
积
神经网络
张量图卷积算子
对比学习
半监督分类
Keywords
multi-source data representation learning
Graph Convolutional Network(GCN)
tensor graph convolution operator
contrastive learning
semi-supervised classification
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于张量化图卷积网络和对比学习的多源数据表示学习模型
龙雨菲
牟宇辰
刘晔
《计算机应用》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部