期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于内变量和张量函数表示定理的本构方程 被引量:2
1
作者 陈明祥 汪碧飞 《岩土力学》 EI CAS CSCD 北大核心 2010年第2期397-402,共6页
针对各向同性材料,基于张量函数表示定理,建立了本构关系的张量不变性表示,其中,3个不可约基张量取决于应力的0~2次幂,且相互正交,3个系数由塑性应变增量和应力的不变量表示。基于塑性应变增量的不变量定义内变量,本构关系归结为确定... 针对各向同性材料,基于张量函数表示定理,建立了本构关系的张量不变性表示,其中,3个不可约基张量取决于应力的0~2次幂,且相互正交,3个系数由塑性应变增量和应力的不变量表示。基于塑性应变增量的不变量定义内变量,本构关系归结为确定内变量的演化。使用张量函数表示定理,给出了内变量演化方程的一般表达式,它取决于应力不变量的增量,因而与主轴旋转无关。讨论了如何根据试验资料和引入适当的假定,确定具体的演化方程。通过与塑性势理论和多重屈服面理论进行比较,表明所建模型是这些理论的最一般表示,且简捷直观、使用方便。 展开更多
关键词 内变量 张量函数表示定理 本构方程 塑性势 各向同性 屈服面
在线阅读 下载PDF
关于返回映射算法中应力的四阶张量值函数 被引量:6
2
作者 陈明祥 《力学学报》 EI CSCD 北大核心 2010年第2期228-237,共10页
针对各向同性材料,基于一组相互正交的基张量,建立了一套有效的相关运算方法.基张量中的两个分别是归一化的二阶单位张量和偏应力张量,另一个则使用应力的各向同性二阶张量值函数经过归一化构造所得,三者共主轴.根据张量函数表示定理,... 针对各向同性材料,基于一组相互正交的基张量,建立了一套有效的相关运算方法.基张量中的两个分别是归一化的二阶单位张量和偏应力张量,另一个则使用应力的各向同性二阶张量值函数经过归一化构造所得,三者共主轴.根据张量函数表示定理,本构方程和返回映射算法中所涉及到的应力的二阶、四阶张量值函数及其逆都由这组基所表示.推演结果表明:这些张量之间的运算,表现为对应系数矩阵之间的简单关系.其中,四阶张量求逆归结为对应的3×3系数矩阵求逆,它对二阶张量的变换则表现为该矩阵对3×1列阵的变换.最后,对这些变换关系应用于返回映射算法的迭代格式进行了相关讨论. 展开更多
关键词 本构方程积分 应力更新 返回映射算法 各向同性 张量函数表示定理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部