期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于小波分解的日径流支持向量机回归预测模型
被引量:
17
1
作者
黄巧玲
粟晓玲
杨家田
《西北农林科技大学学报(自然科学版)》
CSCD
北大核心
2016年第4期211-217,共7页
【目的】将小波变换与支持向量机结合,构建小波支持向量机回归模型(WSVR),并用其对日径流进行预测,为水库调度提供参考依据。【方法】利用径流时间序列中包含的大量信息,通过小波变换将径流时间序列分解成不同分辨率水平的子序列和近似...
【目的】将小波变换与支持向量机结合,构建小波支持向量机回归模型(WSVR),并用其对日径流进行预测,为水库调度提供参考依据。【方法】利用径流时间序列中包含的大量信息,通过小波变换将径流时间序列分解成不同分辨率水平的子序列和近似序列,通过相关性分析选取有效子序列与近似序列相加得到的新序列作为支持向量机回归模型的输入,建立小波支持向量机回归耦合模型,以泾河流域张家山站的日径流为研究对象,利用均方根误差(RMSE)、平均绝对误差(MAE)、确定性系数(DC)、相关系数(R)及相对误差(RE)作为评价指标对模型预测精度进行评价。【结果】利用所建立的小波日径流支持向量机模型对张家山站日径流的预测结果显示,该模型在检验阶段的RMSE、MAE、DC、R及RE分别为26.05m3/s,8.26m3/s,0.826,0.910,-13.3%,与仅使用支持向量机回归模型(SVR)相比,耦合模型预测精度明显提高,且非汛期预测效果优于汛期。【结论】建立了小波支持向量机回归耦合模型,该模型可有效模拟和预测日径流,为日径流预测提供了新的途径。
展开更多
关键词
日径流预测
小波变换
支持向量机
张家山水文站
在线阅读
下载PDF
职称材料
题名
基于小波分解的日径流支持向量机回归预测模型
被引量:
17
1
作者
黄巧玲
粟晓玲
杨家田
机构
西北农林科技大学水利与建筑工程学院
重庆大学土木工程学院
出处
《西北农林科技大学学报(自然科学版)》
CSCD
北大核心
2016年第4期211-217,共7页
基金
水利部公益性行业科研专项(201301016)
"十二五"国家科技计划项目(2012BAD08B01)
西北农林科技大学中央高校基本科研业务费科技创新重点项目(QN201168)
文摘
【目的】将小波变换与支持向量机结合,构建小波支持向量机回归模型(WSVR),并用其对日径流进行预测,为水库调度提供参考依据。【方法】利用径流时间序列中包含的大量信息,通过小波变换将径流时间序列分解成不同分辨率水平的子序列和近似序列,通过相关性分析选取有效子序列与近似序列相加得到的新序列作为支持向量机回归模型的输入,建立小波支持向量机回归耦合模型,以泾河流域张家山站的日径流为研究对象,利用均方根误差(RMSE)、平均绝对误差(MAE)、确定性系数(DC)、相关系数(R)及相对误差(RE)作为评价指标对模型预测精度进行评价。【结果】利用所建立的小波日径流支持向量机模型对张家山站日径流的预测结果显示,该模型在检验阶段的RMSE、MAE、DC、R及RE分别为26.05m3/s,8.26m3/s,0.826,0.910,-13.3%,与仅使用支持向量机回归模型(SVR)相比,耦合模型预测精度明显提高,且非汛期预测效果优于汛期。【结论】建立了小波支持向量机回归耦合模型,该模型可有效模拟和预测日径流,为日径流预测提供了新的途径。
关键词
日径流预测
小波变换
支持向量机
张家山水文站
Keywords
daily runoff
wavelet transforms
support vector machine
Zhangjiashan Station
分类号
TV121 [水利工程—水文学及水资源]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于小波分解的日径流支持向量机回归预测模型
黄巧玲
粟晓玲
杨家田
《西北农林科技大学学报(自然科学版)》
CSCD
北大核心
2016
17
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部