Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz...Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.展开更多
Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific c...Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.展开更多
Semiconductor photocatalysis has been considered as a potential technology for the removal of organic dyes from wastewater.The development of photocatalysts with high stability and strong catalytic activity is the mos...Semiconductor photocatalysis has been considered as a potential technology for the removal of organic dyes from wastewater.The development of photocatalysts with high stability and strong catalytic activity is the most important in application.Visible-light-induced NiCo_(2)O_(4)@Co_(3)O_(4) core/shell heterojunctions were synthesized via a sol-gel method in this paper.Compared to bare NiCo_(2)O_(4) and Co_(3)O_(4),NiCo_(2)O_(4)@Co_(3)O_(4) showed a remarkably enhanced removal rate towards congo red(CR)degradation with 98.4%of the removal rate to CR at 120 min under irradiation.The excellent performance of NiCo_(2)O_(4)@Co_(3)O_(4) benefits from the effective separation of photogenerated electron-holes by forming a heterojunction,and the rapid transfer efficiency of photo-generated charge carriers results from the core/shell architectures.A mechanism that NiCo_(2)O_(4)@Co_(3)O_(4) degrades CR to harmless inorganic substances by h^(+),•O-2 and•OH during the photocatalytic process was proposed.展开更多
文摘Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.
基金National Key Research and Development Program of China(2020YFA0405800)National Natural Science Foundation of China(12322515,U23A20121,12225508)+2 种基金Youth Innovation Promotion Association of CAS(2022457)National Postdoctoral Program for Innovative Talents(BX20230346)China Postdoctoral Science Foundation(2023M743365)。
文摘Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.
基金Project(2017TP1031)supported by the Hunan Key Laboratory for Rare Earth Functional Materials,ChinaProject(2020JJ4735)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2018GK4001)supported by Science and Technology Department of Hunan Province Tackling Key Scientific and Technological Problems and Transformation of Major Scientific and Technological Achievements,ChinaProject(CSUZC202126)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Semiconductor photocatalysis has been considered as a potential technology for the removal of organic dyes from wastewater.The development of photocatalysts with high stability and strong catalytic activity is the most important in application.Visible-light-induced NiCo_(2)O_(4)@Co_(3)O_(4) core/shell heterojunctions were synthesized via a sol-gel method in this paper.Compared to bare NiCo_(2)O_(4) and Co_(3)O_(4),NiCo_(2)O_(4)@Co_(3)O_(4) showed a remarkably enhanced removal rate towards congo red(CR)degradation with 98.4%of the removal rate to CR at 120 min under irradiation.The excellent performance of NiCo_(2)O_(4)@Co_(3)O_(4) benefits from the effective separation of photogenerated electron-holes by forming a heterojunction,and the rapid transfer efficiency of photo-generated charge carriers results from the core/shell architectures.A mechanism that NiCo_(2)O_(4)@Co_(3)O_(4) degrades CR to harmless inorganic substances by h^(+),•O-2 and•OH during the photocatalytic process was proposed.