A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Comp...A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Compared to pure TiO_(2),pure BaTiO_(3) and BaTiO_(3)/TiO_(2) physical mixture,the heterostructured BaTiO_(3)@TiO_(2) exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B(RhB)and the degradation efficiency is 1.7 times higher than pure TiO_(2) and 7.2 times higher than pure BaTiO_(3).These results are mainly attributed to the synergy effect of photoelectric TiO_(2),ferroelectric-BaTiO_(3) and the rationally designed interfacial structure.The mesoporous microstructure of TiO_(2) is of a high specific area and enables excellent photocatalytic activity.The ferroelectric polarization induced built-in electric field in BaTiO_(3) nanoparticles,and the intimate interfacial interactions at the interface of BaTiO_(3) and TiO_(2) are effective in driving the separation and transport of photogenerated charge carriers.This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.展开更多
基金Project(cstc2020jcyj-msxm X0930) supported by the Natural Science Foundation of Chongqing,ChinaProject(KJQN201901522) supported by Technological Research Program of Chongqing Municipal Education Commission,ChinaProject(cx2020068) supported by the Venture&Innovation Support Program for Chongqing Overseas Returnees,China。
文摘A catalyst of ferroelectric-BaTiO_(3)@photoelectric-TiO_(2) nanohybrids(BaTiO_(3)@TiO_(2))with enhanced photocatalytic activity was synthesized via a hydrolysis precipitation combined with a hydrothermal approach.Compared to pure TiO_(2),pure BaTiO_(3) and BaTiO_(3)/TiO_(2) physical mixture,the heterostructured BaTiO_(3)@TiO_(2) exhibits significantly improved photocatalytic activity and cycling stability in decomposing Rhodamine B(RhB)and the degradation efficiency is 1.7 times higher than pure TiO_(2) and 7.2 times higher than pure BaTiO_(3).These results are mainly attributed to the synergy effect of photoelectric TiO_(2),ferroelectric-BaTiO_(3) and the rationally designed interfacial structure.The mesoporous microstructure of TiO_(2) is of a high specific area and enables excellent photocatalytic activity.The ferroelectric polarization induced built-in electric field in BaTiO_(3) nanoparticles,and the intimate interfacial interactions at the interface of BaTiO_(3) and TiO_(2) are effective in driving the separation and transport of photogenerated charge carriers.This strategy will stimulate the design of heterostructured photocatalysts with outstanding photocatalytic performance via interface engineering.