期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合词间句间多关系建模的评论推荐算法
1
作者 邓策渝 李段腾川 +2 位作者 胡奕仁 王晓光 李志飞 《计算机科学》 北大核心 2025年第4期119-128,共10页
评论作为最常见的辅助信息,能够直观地表达用户的喜好和物品的属性,被研究者们广泛应用于优化推荐算法的预测精度。然而,目前评论推荐算法仍存在不足,主要体现在忽略了对评论文本多粒度特征的建模和对用户偏好、物品属性这一对异质特征... 评论作为最常见的辅助信息,能够直观地表达用户的喜好和物品的属性,被研究者们广泛应用于优化推荐算法的预测精度。然而,目前评论推荐算法仍存在不足,主要体现在忽略了对评论文本多粒度特征的建模和对用户偏好、物品属性这一对异质特征的关联性交互学习,导致模型无法充分提取评论信息,影响了模型精度。因此,提出了融合词间句间多关系建模的评论推荐算法(MR4R),通过分析评论文本的词间重要性关系和句间时序动态关系,抽取不同层次的特征信息;设计了融合预测层,对用户偏好与物品属性特征间的关联性挖掘过程进行优化,并通过高阶非线性计算进行评分预测。选取了4个不同场景的数据集,并将所提模型与目前主流的7种推荐算法进行比较。实验结果表明,融合词间句间多关系建模的推荐算法能够充分提取评论中蕴含的信息,显著提升了平均推荐精度,具有更强的推荐性能。 展开更多
关键词 评论推荐算法 深度学习 多关系建模 时序特征建模 异质特征融合与交互
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部