期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于事件-词语-特征异质图的微博谣言检测新方法
被引量:
1
1
作者
王友卫
凤丽洲
+1 位作者
王炜琦
侯玉栋
《中文信息学报》
CSCD
北大核心
2023年第9期161-174,共14页
当前微博谣言检测研究大多基于微博原文、评论内容及其相互关系,忽略了情感特征、语法特征及语言特征等重要因素的影响。为此,该文提出了一种基于事件-词语-特征异质图的微博谣言检测新方法。首先,在传统方法基础上引入情感、语法、心...
当前微博谣言检测研究大多基于微博原文、评论内容及其相互关系,忽略了情感特征、语法特征及语言特征等重要因素的影响。为此,该文提出了一种基于事件-词语-特征异质图的微博谣言检测新方法。首先,在传统方法基础上引入情感、语法、心理等方面的知识,提出文本特征的概念以有效挖掘微博事件中蕴含的情感特征、语法特征以及语言特征。然后,综合微博评论、文本词语及文本特征对谣言检测结果的影响,构建用于谣言检测的事件-词语-特征异质图。最后,利用GraphSAGE和异质图注意力网络在节点表达方面的优势提出新的节点信息聚合方法,以此在区分节点类型重要性的同时降低节点集规模带来的影响。实验结果表明,该方法能有效提高微博事件表示的准确性;相对于传统机器学习方法和典型的深度学习方法而言,该方法在谣言检测精度上具有明显优势。
展开更多
关键词
谣言检测
文本特征
异质图注意力网络
在线阅读
下载PDF
职称材料
基于BERT-HAN增强人机对话的计算思维评估模型
被引量:
1
2
作者
詹泽慧
钟煊妍
+1 位作者
邹萱萱
骆丽霞
《计算机工程》
CAS
CSCD
北大核心
2024年第12期110-123,共14页
思维过程的精准量化和思维品质的高效诊断是思维型教学智能化开展的难题。现有的思维分析方法普遍存在静态局限性,割裂了事理逻辑和动态情境对思维的影响。人机对话作为思维外显和评估的重要载体,为计算思维自动化评估提供了潜在可能。...
思维过程的精准量化和思维品质的高效诊断是思维型教学智能化开展的难题。现有的思维分析方法普遍存在静态局限性,割裂了事理逻辑和动态情境对思维的影响。人机对话作为思维外显和评估的重要载体,为计算思维自动化评估提供了潜在可能。为提高人机对话环境下计算思维水平预测的准确性和可解释性,构建基于BERT-异质图注意力网络(HAN)的计算思维自动化评估模型。采集人机对话过程中所获取的时序性文本作为学习者计算思维的外部表征,通过BERT-HAN模型从人机对话文本数据中提取句子级语义特征表示,将这些特征作为异质图的节点特征输入到HAN中。模型耦合了基于余弦相似度的句子语义特征和基于关系词列表的元路径嵌入,进一步提取语句之间的语义关系。在此过程中,通过注意力机制生成学习节点间的关系权重,形成具有丰富语义信息的事理图谱。事理图谱的构建不仅考虑语句之间的直接关系,还可以基于多头注意力机制灵活捕捉并处理异质图中不同关系类型的特征。最终,根据这些特征,利用Softmax分类器进行计算思维水平的识别和预测,以实现自动化评估。实验结果表明,该模型的预测准确率为0.869,召回率为1,AUC值为0.998,相较于BERT、TextCNN、LSTM-HAN等模型具有更好的性能。
展开更多
关键词
人机对话
事理
图
谱
计算思维
文本分析
异质图注意力网络
在线阅读
下载PDF
职称材料
题名
基于事件-词语-特征异质图的微博谣言检测新方法
被引量:
1
1
作者
王友卫
凤丽洲
王炜琦
侯玉栋
机构
中央财经大学信息学院
天津财经大学统计学院
出处
《中文信息学报》
CSCD
北大核心
2023年第9期161-174,共14页
基金
教育部人文社科项目(19YJCZH178)
国家自然科学基金(61906220)
+1 种基金
国家社会科学基金(18CTJ008)
中央财经大学新兴交叉学科建设项目。
文摘
当前微博谣言检测研究大多基于微博原文、评论内容及其相互关系,忽略了情感特征、语法特征及语言特征等重要因素的影响。为此,该文提出了一种基于事件-词语-特征异质图的微博谣言检测新方法。首先,在传统方法基础上引入情感、语法、心理等方面的知识,提出文本特征的概念以有效挖掘微博事件中蕴含的情感特征、语法特征以及语言特征。然后,综合微博评论、文本词语及文本特征对谣言检测结果的影响,构建用于谣言检测的事件-词语-特征异质图。最后,利用GraphSAGE和异质图注意力网络在节点表达方面的优势提出新的节点信息聚合方法,以此在区分节点类型重要性的同时降低节点集规模带来的影响。实验结果表明,该方法能有效提高微博事件表示的准确性;相对于传统机器学习方法和典型的深度学习方法而言,该方法在谣言检测精度上具有明显优势。
关键词
谣言检测
文本特征
异质图注意力网络
Keywords
rumor detection
text features
heterogeneous graph attention network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于BERT-HAN增强人机对话的计算思维评估模型
被引量:
1
2
作者
詹泽慧
钟煊妍
邹萱萱
骆丽霞
机构
华南师范大学教育信息技术学院
出处
《计算机工程》
CAS
CSCD
北大核心
2024年第12期110-123,共14页
基金
国家自然科学基金面上项目(62277018)
教育部人文社科基金(22YJC880106)
国家自然科学基金重点课题(62237001)。
文摘
思维过程的精准量化和思维品质的高效诊断是思维型教学智能化开展的难题。现有的思维分析方法普遍存在静态局限性,割裂了事理逻辑和动态情境对思维的影响。人机对话作为思维外显和评估的重要载体,为计算思维自动化评估提供了潜在可能。为提高人机对话环境下计算思维水平预测的准确性和可解释性,构建基于BERT-异质图注意力网络(HAN)的计算思维自动化评估模型。采集人机对话过程中所获取的时序性文本作为学习者计算思维的外部表征,通过BERT-HAN模型从人机对话文本数据中提取句子级语义特征表示,将这些特征作为异质图的节点特征输入到HAN中。模型耦合了基于余弦相似度的句子语义特征和基于关系词列表的元路径嵌入,进一步提取语句之间的语义关系。在此过程中,通过注意力机制生成学习节点间的关系权重,形成具有丰富语义信息的事理图谱。事理图谱的构建不仅考虑语句之间的直接关系,还可以基于多头注意力机制灵活捕捉并处理异质图中不同关系类型的特征。最终,根据这些特征,利用Softmax分类器进行计算思维水平的识别和预测,以实现自动化评估。实验结果表明,该模型的预测准确率为0.869,召回率为1,AUC值为0.998,相较于BERT、TextCNN、LSTM-HAN等模型具有更好的性能。
关键词
人机对话
事理
图
谱
计算思维
文本分析
异质图注意力网络
Keywords
human-machine dialogue
event graph
computational thinking
text analysis
Heterogeneous graph Attention Network(HAN)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于事件-词语-特征异质图的微博谣言检测新方法
王友卫
凤丽洲
王炜琦
侯玉栋
《中文信息学报》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
2
基于BERT-HAN增强人机对话的计算思维评估模型
詹泽慧
钟煊妍
邹萱萱
骆丽霞
《计算机工程》
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部