期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical simulation and experimental study of hybrid laser-electric arc welding between dissimilar Mg alloys 被引量:3
1
作者 MA Yu-lin ZHU Jian +7 位作者 ZHANG Long-mei REN Zhi-qiang ZHAO Yang WANG Wen-yu WANG Xiao-ming HUI Xi-dong WU Yong-ling ZHENG Hong-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3476-3488,共13页
This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s la... This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s law of heat conduction, the differential equations of the three-dimensional temperature field for nonlinear transient heat conduction are built. According to the analysis of nonlinear transient heat transfer, the equations representing initial conditions and boundary conditions are obtained. The “double ellipsoidal heat source + 3D Gaussian heat source”combination was chosen to construct the laser-electric arc hybrid heat source. The weld bead morphologies and the distribution of temperature, stress, displacement and plastic strains are numerically simulated. The actual welding experiments were performed by a hybrid laser-electric arc welding machine. The interaction mechanism between laser and electric arc in the hybrid welding of Mg alloys is discussed in detail. The hybrid heat source can promote the absorption of laser energy and electric arc in the molten pool, resulting in more uniform energy distribution in the molten pool and the corresponding improvement of welding parameters. This work can provide theoretical guidance and data supports for the optimization of the hybrid laser-electric arc welding processes for Mg alloys. 展开更多
关键词 hybrid laser-electric arc welding dissimilar Mg alloys welding numerical simulation interaction mechanisms welding optimizations
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部