针对铁路轨道异物侵限检测精度偏低、速度偏慢、易出现漏检与误检的问题,提出一种基于浅层特征融合的轻量级铁轨异物侵限检测算法(YOLO Lightweight and Shallow-feature Fusion,YOLO-LSF).首先,结合YOLOv8n特征提取网络,基于GhostConv...针对铁路轨道异物侵限检测精度偏低、速度偏慢、易出现漏检与误检的问题,提出一种基于浅层特征融合的轻量级铁轨异物侵限检测算法(YOLO Lightweight and Shallow-feature Fusion,YOLO-LSF).首先,结合YOLOv8n特征提取网络,基于GhostConv改进C2f模块以构建C2f_Ghost模块,从而降低模型的参数量和计算量;其次,在骨干网络尾端引入MLCA注意力机制,增强目标区域的特征信息,优化模型的特征提取效率;再次,利用可变形卷积DCNv2替换YO-LOv8n中C2f模块的部分普通卷积,构建了C2f_DCNv2模块,增强模型的特征提取能力;最后,在颈部网络中融入主干网络中的浅层特征信息,较好地解决了经多次卷积操作所导致的细节信息丢失问题,以提升模型对远距离异物(小目标)的检测能力.实验结果表明:在自建的铁轨异物入侵检测数据集上,相比于原YOLOv8n算法,采用YOLO-LSF算法处理的平均精度提升了5.2%,每秒帧数(Frames Per Second,FPS)提升了3.37%,参数量减少了20.1%,计算量减少了22.2%,有效提升了复杂环境下铁轨异物目标的检测精度与检测速度,降低了漏检与误检的概率.展开更多
井下运煤带式输送机是煤炭生产运输的关键环节。由于运煤皮带上出现的锚杆、槽钢、铁棍等异物,皮带在运行过程中容易出现纵向撕裂甚至断带等事故。针对煤矿井下的皮带异物检测问题,提出了一种基于迁移学习和在线难例挖掘的井下皮带异物...井下运煤带式输送机是煤炭生产运输的关键环节。由于运煤皮带上出现的锚杆、槽钢、铁棍等异物,皮带在运行过程中容易出现纵向撕裂甚至断带等事故。针对煤矿井下的皮带异物检测问题,提出了一种基于迁移学习和在线难例挖掘的井下皮带异物检测模型。首先,利用迁移学习策略,提高模型泛化能力,解决数据集较小的问题;其次,在特征融合层的改进型空间金字塔池化模块(Spatial Pyramid Pooling Fast,SPPF)添加坐标注意力(Coordinate Attention,CA)机制,提升模型特征的表达能力;之后,使用损失函数WIoU(Wise Intersection over Union)代替损失函数CIoU(Complete Intersection over Union),加快模型训练速度;最后,利用在线难例挖掘(Online Hard Example Mining,OHEM)策略,帮助模型更好地学习难分类的样本。试验结果表明,井下皮带异物检测模型在自建异物检测数据集上mAP@0.5和mAP@0.5-0.95分别取得了92.5%和79.4%的检测效果,与原YOLOv8相比分别增加了2.6百分点和1.8百分点,并且本模型在实际矿山的检测中取得了90.4%的检测效果,表明模型在实际矿井环境中具有较强的适用性,可为井下皮带异物的检测提供技术支持。展开更多
为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络...为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络中,该模块融合了FasterBlock模块和高效多尺度注意力(efficient multi-scale attention,EMA)注意力机制,增强了图像的特征提取能力,同时降低了算法计算量;其次,在路径聚合网络(path aggregation network,PANet,)网络架构中融合了骨干网络中的P2特征层并设计了双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)网络架构,增加了跨尺度连接促进了不同特征图之间的信息融合,同时加入C2f_Faster模块提高了特征融合的效率并进一步降低了算法的计算量;最后,通过改进损失函数为Inner-CIoU(intersection over union,complete intersection over union loss)加快了算法的收敛速度,提高了检测准确率。结果表明,Fast-BiYOLOv8n算法的检测准确率达到99.0%,召回率为98.8%,平均精度均值(mean average precision,mAP)提升了3.5个百分点,达到99.3%,参数量比原模型降低了27%,模型的权重大小降低了21%,实现了在降低算法参数量的同时,提升检测准确率的目的。展开更多
文摘针对铁路轨道异物侵限检测精度偏低、速度偏慢、易出现漏检与误检的问题,提出一种基于浅层特征融合的轻量级铁轨异物侵限检测算法(YOLO Lightweight and Shallow-feature Fusion,YOLO-LSF).首先,结合YOLOv8n特征提取网络,基于GhostConv改进C2f模块以构建C2f_Ghost模块,从而降低模型的参数量和计算量;其次,在骨干网络尾端引入MLCA注意力机制,增强目标区域的特征信息,优化模型的特征提取效率;再次,利用可变形卷积DCNv2替换YO-LOv8n中C2f模块的部分普通卷积,构建了C2f_DCNv2模块,增强模型的特征提取能力;最后,在颈部网络中融入主干网络中的浅层特征信息,较好地解决了经多次卷积操作所导致的细节信息丢失问题,以提升模型对远距离异物(小目标)的检测能力.实验结果表明:在自建的铁轨异物入侵检测数据集上,相比于原YOLOv8n算法,采用YOLO-LSF算法处理的平均精度提升了5.2%,每秒帧数(Frames Per Second,FPS)提升了3.37%,参数量减少了20.1%,计算量减少了22.2%,有效提升了复杂环境下铁轨异物目标的检测精度与检测速度,降低了漏检与误检的概率.
文摘井下运煤带式输送机是煤炭生产运输的关键环节。由于运煤皮带上出现的锚杆、槽钢、铁棍等异物,皮带在运行过程中容易出现纵向撕裂甚至断带等事故。针对煤矿井下的皮带异物检测问题,提出了一种基于迁移学习和在线难例挖掘的井下皮带异物检测模型。首先,利用迁移学习策略,提高模型泛化能力,解决数据集较小的问题;其次,在特征融合层的改进型空间金字塔池化模块(Spatial Pyramid Pooling Fast,SPPF)添加坐标注意力(Coordinate Attention,CA)机制,提升模型特征的表达能力;之后,使用损失函数WIoU(Wise Intersection over Union)代替损失函数CIoU(Complete Intersection over Union),加快模型训练速度;最后,利用在线难例挖掘(Online Hard Example Mining,OHEM)策略,帮助模型更好地学习难分类的样本。试验结果表明,井下皮带异物检测模型在自建异物检测数据集上mAP@0.5和mAP@0.5-0.95分别取得了92.5%和79.4%的检测效果,与原YOLOv8相比分别增加了2.6百分点和1.8百分点,并且本模型在实际矿山的检测中取得了90.4%的检测效果,表明模型在实际矿井环境中具有较强的适用性,可为井下皮带异物的检测提供技术支持。
文摘为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络中,该模块融合了FasterBlock模块和高效多尺度注意力(efficient multi-scale attention,EMA)注意力机制,增强了图像的特征提取能力,同时降低了算法计算量;其次,在路径聚合网络(path aggregation network,PANet,)网络架构中融合了骨干网络中的P2特征层并设计了双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)网络架构,增加了跨尺度连接促进了不同特征图之间的信息融合,同时加入C2f_Faster模块提高了特征融合的效率并进一步降低了算法的计算量;最后,通过改进损失函数为Inner-CIoU(intersection over union,complete intersection over union loss)加快了算法的收敛速度,提高了检测准确率。结果表明,Fast-BiYOLOv8n算法的检测准确率达到99.0%,召回率为98.8%,平均精度均值(mean average precision,mAP)提升了3.5个百分点,达到99.3%,参数量比原模型降低了27%,模型的权重大小降低了21%,实现了在降低算法参数量的同时,提升检测准确率的目的。