期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于异步优势动作评价的RFID室内定位算法 被引量:5
1
作者 李丽 郑嘉利 +2 位作者 王哲 袁源 石静 《计算机科学》 CSCD 北大核心 2020年第2期233-238,共6页
针对现有的RFID室内定位算法的精度容易受到环境因素影响的问题,提出了一种基于异步优势动作评价(Asynchronous Advantage Actor-critic,A3C)的RFID室内定位算法。该算法的主要步骤为:1)将RFID的信号强度RSSI值作为输入值,多个线程子动... 针对现有的RFID室内定位算法的精度容易受到环境因素影响的问题,提出了一种基于异步优势动作评价(Asynchronous Advantage Actor-critic,A3C)的RFID室内定位算法。该算法的主要步骤为:1)将RFID的信号强度RSSI值作为输入值,多个线程子动作网络并行交互采样学习,利用子评价网络评价动作值的优劣,使模型不断优化,找到最优信号强度RSSI值,并训练定位模型;子线程网络定期将网络参数异步更新到全局网络上,全局网络最后输出参考标签的具体位置,同时训练得到异步优势动作评价定位模型。2)在线定位阶段,当待测目标进入待测区域时,记录待测目标的信号强度RSSI值,将其输入异步优势动作评价定位模型中,子线程网络从全局网络中获取最新定位信息,对待测目标进行定位,最后输出目标的具体位置。实验数据表明,基于异步优势动作评价的RFID室内定位算法与传统的基于向量机(Support Vector Machines,SVM)定位、基于极限学习机(Extreme Learning Machine,ELM)定位、基于多层神经网络定位(Multi-Layer Perceptron,MLP)的RFID室内定位算法相比,定位平均误差分别下降了66.114%,50.316%,44.494%;定位稳定性分别平均提高了59.733%,53.083%,43.748%。实验结果表明,基于异步优势动作评价的RFID室内定位算法在处理大量室内定位目标时具有较好的定位性能。 展开更多
关键词 RFID RSSI 强化学习 异步优势动作评价 室内定位
在线阅读 下载PDF
矿山信息物理融合系统多节点智联策略 被引量:4
2
作者 马洋锦 付茂全 +1 位作者 许志 李敬兆 《工矿自动化》 北大核心 2020年第3期38-42,48,共6页
针对当前矿山信息物理融合系统(CPS)的通信节点无法与基于不同无线通信协议的感知节点实现智能连接的问题,在通信节点上集成多种通信模块构成多模态通信节点,提出了一种基于渐进式神经网络的矿山CPS多节点智联策略。采用渐进式神经网络... 针对当前矿山信息物理融合系统(CPS)的通信节点无法与基于不同无线通信协议的感知节点实现智能连接的问题,在通信节点上集成多种通信模块构成多模态通信节点,提出了一种基于渐进式神经网络的矿山CPS多节点智联策略。采用渐进式神经网络控制多模态通信节点准确切换工作模态,实现异构无线通信网络自主建立;利用异步优势动作评价算法对渐进式神经网络进行深度训练,提高渐进式神经网络的收敛速度和训练精度。实验结果表明,该策略实现了多模态通信节点与多类感知节点之间的准确、可靠通信。 展开更多
关键词 智慧矿山 矿山信息物理融合系统 多模态通信节点 渐进式神经网络 异步优势动作评价算法
在线阅读 下载PDF
三层移动网络体系中基于DRL的卸载策略研究 被引量:2
3
作者 葛海波 赵其实 +1 位作者 车虹葵 李照宇 《传感器与微系统》 CSCD 北大核心 2022年第8期60-63,67,共5页
在用户设备、边缘计算服务器和云服务器构成的三层移动网络体系中,如何高效地进行任务卸载是一个重要的问题。针对移动边缘计算(MEC)中多用户多服务器环境下的长时延和高能耗问题,提出一种基于深度强化学习(DRL)算法的三层移动网络架构... 在用户设备、边缘计算服务器和云服务器构成的三层移动网络体系中,如何高效地进行任务卸载是一个重要的问题。针对移动边缘计算(MEC)中多用户多服务器环境下的长时延和高能耗问题,提出一种基于深度强化学习(DRL)算法的三层移动网络架构,将卸载决策问题模型化为约束条件下的最优化问题。结合深度强化学习理论,利用改进的A3C(IA3C)算法求解。仿真结果表明:与深度Q网络(DQN)、全本地卸载算法、全边缘卸载算法相比,在设备数量、MEC计算能力和用户数据量三个方面,提出的卸载策略均能更有效地降低总成本。 展开更多
关键词 移动边缘计算 三层移动网络体系 任务卸载 异步优势动作评价 深度强化学习
在线阅读 下载PDF
面向航班延误场景的机位预分配模型及算法研究
4
作者 王鑫晨 吕增威 +1 位作者 魏振春 张浩 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第8期1079-1085,共7页
针对航班延误场景下易出现机位变更的问题,文章以最小化机位冲突概率和最大化乘客靠桥率为目标,增加基于机位冲突概率的鲁棒性约束,结合机场实际业务规则构建具有良好抗延误特性的机位预分配模型,并将其建模为马尔可夫决策模型,提出基... 针对航班延误场景下易出现机位变更的问题,文章以最小化机位冲突概率和最大化乘客靠桥率为目标,增加基于机位冲突概率的鲁棒性约束,结合机场实际业务规则构建具有良好抗延误特性的机位预分配模型,并将其建模为马尔可夫决策模型,提出基于异步优势动作评价的机位预分配算法(gate assignment algorithm based on asynchronous advantage actor-critic,GABA3C)求解该问题。为验证所提算法在各种变化场景下的适用性,文章设置3组场景实例。仿真结果表明,所提出的算法在有效提升旅客满意度的同时,还可以解决因航班延误造成的机位冲突问题。相比于自适应并行遗传算法(adaptive parallel genetic algorithm,APGA)、近端策略优化(proximal policy optimization,PPO)算法以及深度Q网络(deep Q-network,DQN)算法,该文所提算法求得的解在乘客靠桥率上的目标值分别提高了5.7%、4.6%、5.8%,在机位冲突概率上的目标值分别降低了23.5%、10.0%、17.4%。 展开更多
关键词 航班延误 机位预分配 异步优势动作评价 机位冲突概率 旅客满意度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部