期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种异构神经网络集成协同构造算法 被引量:5
1
作者 傅向华 冯博琴 +1 位作者 马兆丰 韩冰 《小型微型计算机系统》 CSCD 北大核心 2005年第4期641-645,共5页
提出一种异构神经网络集成的协同构造算法(HNNECC).首先利用进化规划同时进化网络拓扑结构和连接权值,生成多个异构最优网络,然后对异构网络进行组合.在构造神经网络集成的过程中通过协同合作,保持各网络间的负相关,从而在提高成员网络... 提出一种异构神经网络集成的协同构造算法(HNNECC).首先利用进化规划同时进化网络拓扑结构和连接权值,生成多个异构最优网络,然后对异构网络进行组合.在构造神经网络集成的过程中通过协同合作,保持各网络间的负相关,从而在提高成员网络精度的同时增加各成员网络之间的差异度.利用统计学习理论对算法进行分析,表明该方法具有很好的泛化性能.分别在四个数据集上进行了实验,相对于单个网络,本文方法可提高性能17%到85%,亦优于Bagging等传统固定结构的神经网络集成方法. 展开更多
关键词 神经网络集成 异构神经网络 负相关学习 协同构造
在线阅读 下载PDF
基于新型进化规划的异构神经网络集成算法
2
作者 王立 朱学峰 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期86-90,共5页
为了进一步提高集成算法的泛化性能,增强个体网络生成过程的客观性,提出一种基于新型进化规划的异构神经网络集成算法.该算法首先利用改进的进化规划生成多个异构的最优网络,然后对异构网络进行组合求解.仿真实验表明,文中算法能够克服... 为了进一步提高集成算法的泛化性能,增强个体网络生成过程的客观性,提出一种基于新型进化规划的异构神经网络集成算法.该算法首先利用改进的进化规划生成多个异构的最优网络,然后对异构网络进行组合求解.仿真实验表明,文中算法能够克服传统集成算法中成员网络结构固定、缺乏个体精度的缺点,具有比传统集成算法更好的泛化性能和更少的随机不确定因素. 展开更多
关键词 进化规划 神经网络集成 异构神经网络 Bootstrap采样 泛化性能
在线阅读 下载PDF
基于异构卷积神经网络集成的无监督行人重识别方法 被引量:5
3
作者 彭锦佳 王辉兵 《电子学报》 EI CAS CSCD 北大核心 2023年第10期2902-2914,共13页
行人重识别旨在从不同的摄像头中识别目标行人的图像.由于不同场景之间存在域偏差,在一个场景中训练好的重识别模型无法直接应用在另一个场景中.为克服该问题,现有的无监督行人重识别方法倾向通过使用聚类算法获得伪标签,再利用伪标签... 行人重识别旨在从不同的摄像头中识别目标行人的图像.由于不同场景之间存在域偏差,在一个场景中训练好的重识别模型无法直接应用在另一个场景中.为克服该问题,现有的无监督行人重识别方法倾向通过使用聚类算法获得伪标签,再利用伪标签训练重识别模型.但是,由于聚类结果是不准确的,这类方法会引入大量噪声标签,从而限制了模型的泛化能力.因此,为减轻噪声伪标签的影响,本文提出了一种基于异构卷积神经网络集成的无监督行人重识别方法.该框架不使用任何人工标记信息,自动推测目标域中行人图像之间的关系,并构建协作可信实例选择机制,选择可信度高的伪标签用于模型的训练.通过设计双分支异构卷积神经网络学习判别能力强的多种行人特征,并利用记忆单元存储训练过程中的全局特征,减少因噪声标签在训练过程中产生的波动,提高模型的鲁棒性.本文方法在多个公开行人数据集上进行了验证并得到了良好的实验结果.在Market1501和DukeMTMC-reID数据集上,mAP分别达到了85.4%和74.8%. 展开更多
关键词 行人重识别 异构卷积神经网络 协作可信实例选择 噪声平滑 自适应更新
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部