-
题名基于异构社交上下文的多视图微博主题检测
被引量:2
- 1
-
-
作者
贺瑞芳
王浩成
刘宏宇
王博
-
机构
天津大学智能与计算学部
天津市认知计算与应用重点实验室
-
出处
《软件学报》
EI
CSCD
北大核心
2023年第11期5162-5178,共17页
-
基金
国家自然科学基金(61976154)
国家重点研发计划(2019YFC1521200)。
-
文摘
社交媒体主题检测旨在从大规模短帖子中挖掘潜在的主题信息.由于帖子形式简短、表达非正规化,且社交媒体中用户交互复杂多样,使得该任务具有一定的挑战性.前人工作仅考虑了帖子的文本内容,或者同时对同构情境下的社交上下文进行建模,忽略了社交网络的异构性.然而,不同的用户交互方式,如转发,评论等,可能意味着不同的行为模式和兴趣偏好,其反映了对主题的不同的关注与理解;此外,不同用户对同一主题的发展和演化具有不同影响,社区中处于引领地位的权威用户相对于普通用户对主题推断会产生更重要的作用.因此,提出一种新的多视图主题模型(multi-view topic model,MVTM),通过编码微博会话网络中的异构社交上下文来推断更加完整、连贯的主题.首先根据用户之间的交互关系构建一个属性多元异构会话网络,并将其分解为具有不同交互语义的多个视图;接着,考虑不同交互方式与不同用户的重要性,借助邻居级注意力和交互级注意力机制,得到特定视图的嵌入表示;最后,设计一个多视图驱动的神经变分推理方法,以捕捉不同视图之间的深层关联,并自适应地平衡它们的一致性和独立性,从而产生更连贯的主题.在3个月新浪微博数据集上的实验结果证明所提方法的有效性.
-
关键词
社交媒体主题检测
异构社交上下文
多视图
注意力机制
神经变分推理
-
Keywords
social topic detection
heterogeneous social contexts
multiple views
attention mechanism
neural variational inference
-
分类号
TP18
[自动化与计算机技术—控制理论与控制工程]
-