期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
异构属性网络中统计显著密集子图发现算法研究
1
作者 李源 范晓林 +1 位作者 孙晶 赵宇海 《小型微型计算机系统》 CSCD 北大核心 2021年第10期2203-2210,共8页
密集子图体现了大图中的稠密部分,它是图中具有最高密度的子图,这使得它在事件检测,生物分析和社区发现等方面具有广泛应用和实用价值.现有的密集子图发现方法所使用的图模型描述不够详细,并且发现的密集子图缺乏统计显著性.为了解决以... 密集子图体现了大图中的稠密部分,它是图中具有最高密度的子图,这使得它在事件检测,生物分析和社区发现等方面具有广泛应用和实用价值.现有的密集子图发现方法所使用的图模型描述不够详细,并且发现的密集子图缺乏统计显著性.为了解决以上问题,本文提出了异构属性网络这一新模型,然后在异构属性网络上通过非参数扫描统计和基于(k,Ψ)-核的方法发现高Steiner连通度的统计显著密集子图.首先构建异构属性网络,其包括类型、实体、关系和带有时序关系的属性信息;其次通过历史属性信息计算异构属性网络中每个实体的统计值,形成统计权重网络;然后利用非参数扫描统计方法测量统计权重网络中子图的统计显著性;最后由于此问题是NP-难的,于是提出了基于(k,Ψ)-核的局部扩展的近似统计显著密集子图发现算法.大量基于真实异构属性网络数据的实验结果证明了本文所提出算法的有效性和高效性. 展开更多
关键词 异构属性网络 密集子图 统计显著性 (k Ψ)-核
在线阅读 下载PDF
基于属性异构网络表示学习的专利交易推荐 被引量:8
2
作者 何喜军 吴爽爽 +3 位作者 武玉英 才久然 庞婷 Chee Seng Chan 《情报学报》 CSSCI CSCD 北大核心 2022年第11期1214-1228,共15页
融合异构信息进行专利交易推荐可以促进交易,但存在因忽略专利属性而影响推荐结果的问题。本研究提出基于属性异构网络(attribute heterogeneous network,AHN)表示学习的专利交易推荐模型(patent transaction recommendation based on A... 融合异构信息进行专利交易推荐可以促进交易,但存在因忽略专利属性而影响推荐结果的问题。本研究提出基于属性异构网络(attribute heterogeneous network,AHN)表示学习的专利交易推荐模型(patent transaction recommendation based on AHN representation learning,AHNRL-PTR)。首先筛选专利和组织中影响专利交易的属性;其次构建专利交易AHN,然后在AHN中引入网络表示学习,并基于多维高斯分布解决节点表示的不确定性,基于KL散度(Kullback-Leibler divergence)解决节点间距离非对称性。最后,以粤港澳大湾区有效发明授权专利数据进行实证研究,得出结论:第一,相比于metapath2vec、TADW(text-associated DeepWalk)和AHNRL-PTR模型的两个变体方法,AHNRL-PTR模型的推荐精度最高,超过86%,说明融合组织及专利属性,并聚焦节点表示的不确定性和非对称性问题的解决,能大幅提高推荐精度;第二,在非准确指标IntraSim和Popularity上,AHNRL-PTR的表现优于metapath2vec和两个变体方法,反映该方法的推荐结果具有一定的多样性,且可以挖掘推荐冷门专利;第三,基于两个非准确指标将组织聚类为六类,分别为中介型、领域骨干型、研究型、族群型、成长型、专业型,体现了推荐结果的可解释性和个性化水平。本研究可为专利交易智能化推荐服务提供决策支持。 展开更多
关键词 属性异构网络 网络表示学习 专利交易推荐
在线阅读 下载PDF
自注意力机制的属性异构信息网络嵌入的商品推荐 被引量:5
3
作者 王宏琳 杨丹 +1 位作者 聂铁铮 寇月 《计算机研究与发展》 EI CSCD 北大核心 2022年第7期1509-1521,共13页
基于异构信息网络嵌入的推荐技术能够有效地捕捉网络中的结构信息,从而提升推荐性能.然而现有的基于异构信息网络嵌入的推荐技术不仅忽略了节点的属性信息与节点间多种类型的边关系,还忽略了节点不同的属性信息对推荐结果不同的影响.为... 基于异构信息网络嵌入的推荐技术能够有效地捕捉网络中的结构信息,从而提升推荐性能.然而现有的基于异构信息网络嵌入的推荐技术不仅忽略了节点的属性信息与节点间多种类型的边关系,还忽略了节点不同的属性信息对推荐结果不同的影响.为了解决上述问题,提出一个自注意力机制的属性异构信息网络嵌入的商品推荐(attributed heterogeneous information network embedding with self-attention mechanism for product recommendation, AHNER)框架.该框架利用属性异构信息网络嵌入学习用户与商品统一、低维的嵌入表示,并在学习节点嵌入表示时,考虑到不同属性信息对推荐结果的影响不同和不同边关系反映用户对商品不同程度的偏好,引入自注意力机制挖掘节点属性信息与不同边类型所蕴含的潜在信息并学习属性嵌入表示.与此同时,为了克服传统点积方法作为匹配函数的局限性,该框架还利用深度神经网络学习更有效的匹配函数解决推荐问题.AHNER在3个公开数据集上进行大量的实验评估性能,实验结果表明AHNER的可行性与有效性. 展开更多
关键词 网络嵌入 属性异构信息网络 自注意力机制 商品推荐 深度神经网络
在线阅读 下载PDF
属性网络表示学习研究综述
4
作者 刘欣 赵中英 +1 位作者 李智恒 李超 《山东科技大学学报(自然科学版)》 CAS 北大核心 2022年第5期91-101,共11页
属性网络表示学习旨在最大限度保留原始网络特征的同时,利用网络中丰富的结构与属性信息学习节点或边的向量表示,从而将拓扑空间的网络转化到欧式空间,这有利于后续网络分析任务的高效执行,因此受到国内外学者的广泛关注,成为近年来的... 属性网络表示学习旨在最大限度保留原始网络特征的同时,利用网络中丰富的结构与属性信息学习节点或边的向量表示,从而将拓扑空间的网络转化到欧式空间,这有利于后续网络分析任务的高效执行,因此受到国内外学者的广泛关注,成为近年来的研究热点。本研究对属性网络表示学习的代表性方法进行对比研究,首先按照网络的时序性、网络元素的多样性对已有工作进行分类,然后分别阐述了同构属性网络、异构属性网络、动态属性网络的表示学习方法,并对已有方法的核心技术、数据集、评测任务等进行对比研究,最后总结探讨未来可能的研究方向与挑战,旨在为属性网络表示学习的相关研究提供新的思路。 展开更多
关键词 属性网络 表示学习 同构属性网络 异构属性网络 动态属性网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部