传统的功率分配算法由于复杂的矩阵运算与迭代所造成的高时延,在实际通信中实时获取信道信息十分困难,当前重要的研究方向是在系统性能和计算复杂度之间找到有效平衡。针对终端直通(Device-to-Device,D2D)用户与蜂窝用户的联合功率分配...传统的功率分配算法由于复杂的矩阵运算与迭代所造成的高时延,在实际通信中实时获取信道信息十分困难,当前重要的研究方向是在系统性能和计算复杂度之间找到有效平衡。针对终端直通(Device-to-Device,D2D)用户与蜂窝用户的联合功率分配问题,提出一种异构功率控制图神经网络(Heterogeneous Power Control Graph Neural Network,HPCGNN)算法,旨在最大化所有用户的加权和速率。首先通过构建干扰的异构图,将信道和噪声等信息嵌入到图的节点和边;再由HPCGNN完成消息传递和更新,采用无监督学习方式优化深度神经网络(Deep Neural Network,DNN)参数,最终得到最佳的功率分配。仿真结果表明,相较于其他深度学习算法,所提算法能够有效提高系统性能,且在损失5%性能下相较分式规划(Fractional Programming,FP)能降低82%~98%的时间复杂度。展开更多
知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural N...知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural Network,HG-TCKT),将知识追踪任务重述为基于异构图神经网络的时序边分类问题.具体来说,首先将学习记录构建成包含3种节点类型(学生,习题和技能),2种边类型(学生-习题和习题-技能)的异构图数据,异构图描述了学生交互记录中实体类型之间的丰富关系,使用异构图神经网络缓解交互稀疏的问题,引入异构互注意力机制捕捉不同类型节点间的交互关系,提取不同类型节点的高阶特征.将学生节点和习题节点表征拼接,构造边(学生-习题)的表征.最后,使用时间卷积网络捕捉学生历史交互序列的时序依赖关系从而进行预测.在2个真实教育数据集进行实验证明,HG-TCKT相比当前主流知识追踪方法有更好的预测效果.展开更多
文摘传统的功率分配算法由于复杂的矩阵运算与迭代所造成的高时延,在实际通信中实时获取信道信息十分困难,当前重要的研究方向是在系统性能和计算复杂度之间找到有效平衡。针对终端直通(Device-to-Device,D2D)用户与蜂窝用户的联合功率分配问题,提出一种异构功率控制图神经网络(Heterogeneous Power Control Graph Neural Network,HPCGNN)算法,旨在最大化所有用户的加权和速率。首先通过构建干扰的异构图,将信道和噪声等信息嵌入到图的节点和边;再由HPCGNN完成消息传递和更新,采用无监督学习方式优化深度神经网络(Deep Neural Network,DNN)参数,最终得到最佳的功率分配。仿真结果表明,相较于其他深度学习算法,所提算法能够有效提高系统性能,且在损失5%性能下相较分式规划(Fractional Programming,FP)能降低82%~98%的时间复杂度。
文摘知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural Network,HG-TCKT),将知识追踪任务重述为基于异构图神经网络的时序边分类问题.具体来说,首先将学习记录构建成包含3种节点类型(学生,习题和技能),2种边类型(学生-习题和习题-技能)的异构图数据,异构图描述了学生交互记录中实体类型之间的丰富关系,使用异构图神经网络缓解交互稀疏的问题,引入异构互注意力机制捕捉不同类型节点间的交互关系,提取不同类型节点的高阶特征.将学生节点和习题节点表征拼接,构造边(学生-习题)的表征.最后,使用时间卷积网络捕捉学生历史交互序列的时序依赖关系从而进行预测.在2个真实教育数据集进行实验证明,HG-TCKT相比当前主流知识追踪方法有更好的预测效果.