期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于异构值差度量的SOM混合属性数据聚类算法 被引量:5
1
作者 张宇献 彭辉灯 王建辉 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第11期2555-2562,共8页
针对传统聚类算法处理混合属性数据聚类质量不高且聚类结果可视化差的问题,提出了基于异构值差度量的自组织映射混合属性数据聚类算法。该算法以自组织映射神经网络为框架,采用基于样本概率的异构值差度量混合属性数据的相异性。利用分... 针对传统聚类算法处理混合属性数据聚类质量不高且聚类结果可视化差的问题,提出了基于异构值差度量的自组织映射混合属性数据聚类算法。该算法以自组织映射神经网络为框架,采用基于样本概率的异构值差度量混合属性数据的相异性。利用分类特征项在Voronoi集合中出现频率作为分类属性数据参考向量更新规则的基础,通过混合更新规则实现数值属性和分类属性数据规则的更新。利用UCI公共数据库中的分类属性和混合属性数据集来测试所提出的聚类算法,并与SOM算法和kprototypes、SBAC、KL-FCM-GM算法进行比较。最后将所提出的聚类算法应用于轮式移动机器人的运动状态分析,获得了较好的聚类效果。 展开更多
关键词 聚类 自组织映射 异构度量 混合属性 混合更新规则
在线阅读 下载PDF
一种基于粗糙集属性约简的支持向量异常入侵检测方法 被引量:20
2
作者 张义荣 鲜明 +1 位作者 肖顺平 王国玉 《计算机科学》 CSCD 北大核心 2006年第6期64-68,共5页
实现了一种粗糙集属性约简和支持向量机分类相结合的异常入侵检测方法。针对网络连接记录特征属性高维的特点,采用粗糙集属性约简的方法压缩数据空间,然后采用v-SVM两分类方法处理约简和正规化后的数据。基于DARPA1998数据源的实验表明... 实现了一种粗糙集属性约简和支持向量机分类相结合的异常入侵检测方法。针对网络连接记录特征属性高维的特点,采用粗糙集属性约简的方法压缩数据空间,然后采用v-SVM两分类方法处理约简和正规化后的数据。基于DARPA1998数据源的实验表明,与采用全部属性的v-SVM两分类方法相比,该方法具有与之相当的分类精度,但有效地降低了检测时间,减少了存储空间。 展开更多
关键词 异常检测 粗糙集理论 属性约简 υ-SVM算法 异构度量(hvdm)
在线阅读 下载PDF
一种基于双ν支持向量机的异常入侵检测方法 被引量:1
3
作者 包卫东 鲜明 +2 位作者 肖顺平 王国玉 张义荣 《信号处理》 CSCD 北大核心 2007年第4期489-494,共6页
针对实际网络入侵检测中经常遇到的有标定的不均衡数据集,实现了一种基于双ν支持向量机的异常入侵检测方法,其基本思想是对具有不同数目的样本类别赋予不同的惩罚因子,从而使两种类别的分类错误率趋于平衡。基于1999 KDD不均衡数据集... 针对实际网络入侵检测中经常遇到的有标定的不均衡数据集,实现了一种基于双ν支持向量机的异常入侵检测方法,其基本思想是对具有不同数目的样本类别赋予不同的惩罚因子,从而使两种类别的分类错误率趋于平衡。基于1999 KDD不均衡数据集的实验表明,该算法与常规的两分类SVM算法相比,在保持低的误警率的同时,显著提高了对攻击记录的检测率,但对正常样本的检测率略有降低,因此适用于对攻击记录检测更敏感的场合。 展开更多
关键词 异常检测 不均衡数据集 统计学习理论(STL) 双ν支持向量机(dual ν-SVM) 异构度量(hvdm)
在线阅读 下载PDF
HL-Isomap+SVM在网络入侵检测中的应用 被引量:1
4
作者 郑凯梅 钱旭 虎晓红 《计算机工程与应用》 CSCD 北大核心 2010年第28期85-87,共3页
支持向量机所具有的处理小样本和良好的推广能力的优势,在入侵检测中得到了广泛应用。考虑到数据特征的高维性和冗余性,特征提取是一个关键步骤。采用非线性流形学习算法L-Isomap对入侵检测数据进行特征选择,然后应用one-classSVM训练... 支持向量机所具有的处理小样本和良好的推广能力的优势,在入侵检测中得到了广泛应用。考虑到数据特征的高维性和冗余性,特征提取是一个关键步骤。采用非线性流形学习算法L-Isomap对入侵检测数据进行特征选择,然后应用one-classSVM训练并识别异常。通过将异构值差度量(HVDM)距离代替欧几里德距离提出了HL-Isomap。选用KDD数据集来比较上述不同模型,实验结果表明了降维方法的有效性,尤其是误警率性能得到了显著的提高。 展开更多
关键词 界标Isomap(L-Isomap) 支持向量机(SVM) 异构度量(hvdm) 入侵检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部