A comparative study on the phenotypic and genetic characteristics among Acidithiobacillus ferrooxidans (AF2), a typic strain ATCC23270 and a previously isolated strain AF3 was performed. AF2 can use ferrous ion (F...A comparative study on the phenotypic and genetic characteristics among Acidithiobacillus ferrooxidans (AF2), a typic strain ATCC23270 and a previously isolated strain AF3 was performed. AF2 can use ferrous ion (Fe^2+) or elemental sulfur (S^0) as sole energy source, but oxidizes So more effectively than Fe^2+, which is different from ATCC23270 and AF3. The G+C content of AF2 is 51.8% (molar fraction), however, ATCC23270 and AF3 strains have G+C content of 63.7% and 64.8% (molar fraction), respectively. The DNA-DNA hybridization results show that AF2 has 41.53% and 52.38% genome similarity to ATCC 23270 and AF3, respectively, but AF3 has a high genome similarity of 89.86% to ATCC 23270 strain. Rusticyanin (rus) and subunit III of aa3-type cytochrome oxidase (coxC) genes are not detected in AF2, but Fe^2+ oxidase (iro) gene can be detected. To understand the genomic organization of iro gene, a cosmid library of AF2 genome was constructed and iro gene-containing clone was screened. The sequencing result shows that although the nucleotide sequence of iro gene in AF2 is completely identical to that of ATCC 23270 strain, its genomic organization is different from that of ATCC 23270. In AF2, iro is located at downstream ofpurA gene, while it is located at downstream ofpetC-2 gene in ATCC 23270 strain. These results indicate that AF2 is a novel strain ofA. ferrooxidans, and that phenotypic differences among the strains ofA. ferrooxidans are closely correlated with their genetic polymorphisms.展开更多
Gp96, a member of HSP90 family, is a versatile molecular chaperone with various newly-discovered functions, for example to serve as a low affinity, high capacity calcium binding protein, a natural adjuvant for therape...Gp96, a member of HSP90 family, is a versatile molecular chaperone with various newly-discovered functions, for example to serve as a low affinity, high capacity calcium binding protein, a natural adjuvant for therapeutic cancer vaccines, a tumor rejection antigen, an immune regulator to pathological cell death. Its multi-functional and structural characteristics make it also an interesting target to develop antibody-based therapeutics. However, its low immunogenicity to mice, because of its high-sequence similarity among different species, is an obstacle to obtain valuable monoclonal antibodies (MAbs). This is a common problem for any low immunogenic proteins, whose sequences share close identity between mice and other species. Here, a new strategy of priming was employed by swine endogenous full-length gp96 and then boosting by E. coli-system heterologously expressed gp96 N-terminal fragment (N-355) to generate MAbs. Twelve different highly-specific MAbs against swine/human endogenous gp96 were successfully obtained. The binding activities of these MAbs were confirmed by enzyme-linked immunosorbent assay (ELISA), Western blot (WB), immunofluorescence and flow cytometry analysis. This provides some important reagents for further research and potential therapeutics. The methods employed can be used for MAb production of any sequence-highly-conserved proteins between mice and swine/human (or any other species).展开更多
基金Project(200805032) supported by the Scientific Research Program of Marine Public Welfare Industry of China
文摘A comparative study on the phenotypic and genetic characteristics among Acidithiobacillus ferrooxidans (AF2), a typic strain ATCC23270 and a previously isolated strain AF3 was performed. AF2 can use ferrous ion (Fe^2+) or elemental sulfur (S^0) as sole energy source, but oxidizes So more effectively than Fe^2+, which is different from ATCC23270 and AF3. The G+C content of AF2 is 51.8% (molar fraction), however, ATCC23270 and AF3 strains have G+C content of 63.7% and 64.8% (molar fraction), respectively. The DNA-DNA hybridization results show that AF2 has 41.53% and 52.38% genome similarity to ATCC 23270 and AF3, respectively, but AF3 has a high genome similarity of 89.86% to ATCC 23270 strain. Rusticyanin (rus) and subunit III of aa3-type cytochrome oxidase (coxC) genes are not detected in AF2, but Fe^2+ oxidase (iro) gene can be detected. To understand the genomic organization of iro gene, a cosmid library of AF2 genome was constructed and iro gene-containing clone was screened. The sequencing result shows that although the nucleotide sequence of iro gene in AF2 is completely identical to that of ATCC 23270 strain, its genomic organization is different from that of ATCC 23270. In AF2, iro is located at downstream ofpurA gene, while it is located at downstream ofpetC-2 gene in ATCC 23270 strain. These results indicate that AF2 is a novel strain ofA. ferrooxidans, and that phenotypic differences among the strains ofA. ferrooxidans are closely correlated with their genetic polymorphisms.
基金Project(31030030) supported by the National Natural Science Foundation of China
文摘Gp96, a member of HSP90 family, is a versatile molecular chaperone with various newly-discovered functions, for example to serve as a low affinity, high capacity calcium binding protein, a natural adjuvant for therapeutic cancer vaccines, a tumor rejection antigen, an immune regulator to pathological cell death. Its multi-functional and structural characteristics make it also an interesting target to develop antibody-based therapeutics. However, its low immunogenicity to mice, because of its high-sequence similarity among different species, is an obstacle to obtain valuable monoclonal antibodies (MAbs). This is a common problem for any low immunogenic proteins, whose sequences share close identity between mice and other species. Here, a new strategy of priming was employed by swine endogenous full-length gp96 and then boosting by E. coli-system heterologously expressed gp96 N-terminal fragment (N-355) to generate MAbs. Twelve different highly-specific MAbs against swine/human endogenous gp96 were successfully obtained. The binding activities of these MAbs were confirmed by enzyme-linked immunosorbent assay (ELISA), Western blot (WB), immunofluorescence and flow cytometry analysis. This provides some important reagents for further research and potential therapeutics. The methods employed can be used for MAb production of any sequence-highly-conserved proteins between mice and swine/human (or any other species).