期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进RT-DETR的异形电子元件表面缺陷检测算法
1
作者
宣丽萍
陈济禾
+3 位作者
甘一坤
刘海镔
曾北兴
曹子孝
《华南师范大学学报(自然科学版)》
北大核心
2025年第2期85-94,共10页
异形电子元件表面缺陷检测是提高异形插件机插装工艺水平的关键环节。传统的人工检测易受人为主观性影响,模板匹配算法的效率较低,且在样本数据不足的情况下,现有深度学习技术在缺陷检测方面存在精度低、实时性不足等问题。为提高异形...
异形电子元件表面缺陷检测是提高异形插件机插装工艺水平的关键环节。传统的人工检测易受人为主观性影响,模板匹配算法的效率较低,且在样本数据不足的情况下,现有深度学习技术在缺陷检测方面存在精度低、实时性不足等问题。为提高异形元件检测的精度和实时性,文章对目标检测模型RT-DETR进行改进,提出了一种实时多维特征自适应网络(RT-MDAFNet):首先,在模型特征融合层处设计自适应融合金字塔网络(AFPN),通过动态通道注意力机制和选择性特征融合机制来提高模型对多尺度目标的适应性和特征提取能力;然后,设计了自适应通道-空间聚合网络模块(SASE-RepNet),通过结合多层次特征聚合、通道自适应权重分配和空间选择性增强机制来提升在复杂背景下的检测精度和效率。在现有数据集缺乏的情况下,构建了异形电子元件数据集,并将RT-MDAFNet模型与DETR、Faster R-CNN、YOLO系列等8种基线模型进行了对比实验。对比实验结果表明:RT-MDAFNet模型的帧率为41.5 FPS,每秒浮点运算次数(GFLOPs)为75.3,参数量为24.31 M,mAP50值为80.87%,mAP50-95值分别为50.43%。与目前最佳的基线模型(DINO)相比,RT-MDAFNet模型的mAP50、mAP50-95值分别提高了3.31%、3.46%。最后,为了探讨关键组件对模型效果的影响,在自建数据集上进行了消融实验。消融实验结果表明:RT-MDAFNet模型中的AFPN模块和SASE-RepNet模块在模型轻量化和精度提升上具备有效性。与RT-DETR模型相比,RT-MDAFNet模型的mAP50、mAP50-95值分别提高了4.66%、2.54%,参数量降低了9.67 M,GFLOPs减少了28.1,帧率提高了18.7 FPS。总体而言,RT-MDAFNet模型在保证轻量化的同时,也提升了异形元件的检测精度。
展开更多
关键词
异形电子元件检测
RT-DETR
目标
检测
数据增强
在线阅读
下载PDF
职称材料
题名
基于改进RT-DETR的异形电子元件表面缺陷检测算法
1
作者
宣丽萍
陈济禾
甘一坤
刘海镔
曾北兴
曹子孝
机构
华南师范大学数据科学与工程学院
出处
《华南师范大学学报(自然科学版)》
北大核心
2025年第2期85-94,共10页
基金
2023年广东省科技创新战略专项(2023A011)。
文摘
异形电子元件表面缺陷检测是提高异形插件机插装工艺水平的关键环节。传统的人工检测易受人为主观性影响,模板匹配算法的效率较低,且在样本数据不足的情况下,现有深度学习技术在缺陷检测方面存在精度低、实时性不足等问题。为提高异形元件检测的精度和实时性,文章对目标检测模型RT-DETR进行改进,提出了一种实时多维特征自适应网络(RT-MDAFNet):首先,在模型特征融合层处设计自适应融合金字塔网络(AFPN),通过动态通道注意力机制和选择性特征融合机制来提高模型对多尺度目标的适应性和特征提取能力;然后,设计了自适应通道-空间聚合网络模块(SASE-RepNet),通过结合多层次特征聚合、通道自适应权重分配和空间选择性增强机制来提升在复杂背景下的检测精度和效率。在现有数据集缺乏的情况下,构建了异形电子元件数据集,并将RT-MDAFNet模型与DETR、Faster R-CNN、YOLO系列等8种基线模型进行了对比实验。对比实验结果表明:RT-MDAFNet模型的帧率为41.5 FPS,每秒浮点运算次数(GFLOPs)为75.3,参数量为24.31 M,mAP50值为80.87%,mAP50-95值分别为50.43%。与目前最佳的基线模型(DINO)相比,RT-MDAFNet模型的mAP50、mAP50-95值分别提高了3.31%、3.46%。最后,为了探讨关键组件对模型效果的影响,在自建数据集上进行了消融实验。消融实验结果表明:RT-MDAFNet模型中的AFPN模块和SASE-RepNet模块在模型轻量化和精度提升上具备有效性。与RT-DETR模型相比,RT-MDAFNet模型的mAP50、mAP50-95值分别提高了4.66%、2.54%,参数量降低了9.67 M,GFLOPs减少了28.1,帧率提高了18.7 FPS。总体而言,RT-MDAFNet模型在保证轻量化的同时,也提升了异形元件的检测精度。
关键词
异形电子元件检测
RT-DETR
目标
检测
数据增强
Keywords
detection of irregular-shaped electronic components
RT-DETR
object detection
data augmentation
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进RT-DETR的异形电子元件表面缺陷检测算法
宣丽萍
陈济禾
甘一坤
刘海镔
曾北兴
曹子孝
《华南师范大学学报(自然科学版)》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部