期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
基于FHO-CatBoost的分布式电源调控异常事件检测
1
作者 谢国强 卢志学 +4 位作者 陈明亮 余滢婷 潘本仁 孙鹤洋 李元诚 《电网技术》 北大核心 2025年第4期1625-1634,共10页
新型电力系统的全面推进仍然面临多重安全挑战,特别是分布式电源系统容易受极端天气、自然灾害和网络攻击等威胁,从而导致系统波动异常和设备故障,使得分布式电源调度控制面临更加复杂的局面。为应对这些挑战,提高异常事件的检测效率和... 新型电力系统的全面推进仍然面临多重安全挑战,特别是分布式电源系统容易受极端天气、自然灾害和网络攻击等威胁,从而导致系统波动异常和设备故障,使得分布式电源调度控制面临更加复杂的局面。为应对这些挑战,提高异常事件的检测效率和准确率,以辅助分布式电源系统的调控决策技术,提出了一种基于火鹰优化的CatBoost算法(fire hawk optimizer-CatBoost,FHO-CatBoost)的分布式电源调控异常事件检测模型。该模型充分利用了CatBoost的强大梯度框架和自动处理类别特征的能力,通过FHO算法的调整超参数优化模型,提高了检测效率与识别准确率。实验结果证明,FHO-CatBoost模型在不同类别异常事件准确检测和整体性能上均表现优越,并在多方面性能评估中均优于其他主流梯度提升算法,在准确率上达到了91.59%,较最好的CatBoost方法提升了6.58%,具有更出色的性能表现,在分布式电源调控异常事件检测中具有显著优势,为电力系统安全运行提供了重要支持。 展开更多
关键词 分布式电源 异常事件检测 CatBoost 火鹰优化算法
在线阅读 下载PDF
面向边缘端设备的轻量化视频异常事件检测方法 被引量:5
2
作者 李南君 李爽 +2 位作者 李拓 邹晓峰 王长红 《计算机应用研究》 CSCD 北大核心 2024年第1期306-313,320,共9页
现有基于CNN模型的视频异常事件检测方法在精度不断提升的同时,面临架构复杂、参数庞大、训练冗长等问题,致使硬件算力需求高,难以适配无人机等计算资源有限的边缘端设备。为此,提出一种面向边缘端设备的轻量化异常事件检测方法,旨在平... 现有基于CNN模型的视频异常事件检测方法在精度不断提升的同时,面临架构复杂、参数庞大、训练冗长等问题,致使硬件算力需求高,难以适配无人机等计算资源有限的边缘端设备。为此,提出一种面向边缘端设备的轻量化异常事件检测方法,旨在平衡检测性能与推理延迟。首先,由原始视频序列提取梯度立方体与光流立方体作为事件表观与运动特征表示;其次,设计改进的小规模PCANet获取梯度立方体对应的高层次分块直方图特征;再次,根据每个局部分块的直方图特征分布情况计算表观异常得分,同时基于内部像素光流幅值累加计算运动异常得分;最后,依据表观与运动异常得分的加权融合值判别异常分块,实现表观与运动异常事件联合检测与定位。在公开数据集UCSD的Ped1与Ped2子集上进行实验验证,该方法的帧层面AUC分别达到86.7%与94.9%,领先大多数对比方法,且参数量明显降低。实验结果表明,该方法在低算力需求下,可以实现较高的异常检测稳定性和准确率,能够有效兼顾检测精度与计算资源,因此适用于低功耗边缘端设备。 展开更多
关键词 智能视频监控 边缘端设备 异常事件检测 主成分分析网络 分块直方图特征
在线阅读 下载PDF
上下文建模与推理的视频异常事件检测
3
作者 孙澈 武玉伟 贾云得 《计算机学报》 EI CAS CSCD 北大核心 2024年第10期2368-2386,共19页
视频异常事件检测旨在从视频中自动地检测出不符合正常事件规律的视频事件.视频中许多正常和异常的事件是由目标与场景或其它目标交互而产生的,即它们是以目标为中心且高度上下文相关的.如何从底层的视频特征中提取事件高层语义上下文信... 视频异常事件检测旨在从视频中自动地检测出不符合正常事件规律的视频事件.视频中许多正常和异常的事件是由目标与场景或其它目标交互而产生的,即它们是以目标为中心且高度上下文相关的.如何从底层的视频特征中提取事件高层语义上下文信息,并根据上下文信息进行视频异常事件检测仍是一个开放的难题.为此,本文提出了一种新的上下文建模与推理的视频异常事件检测方法.本文方法通过建立视频的上下文图,自动地推理事件相关的语义上下文信息,以缩小底层视觉特征与异常事件高层语义之间的差距,实现异常事件检测.具体来说,首先使用了预训练的目标检测网络,提取目标初始的表观特征、目标之间的时空关系特征和场景特征;其次设计了一个上下文图推理模块,通过建模时空上下文图,将提取到的特征显式地建模为三类语义上下文,包括事件目标的个体行为、不同目标之间的时空关系以及目标与场景之间的交互,其中图的节点表示目标/场景,图的边表示时空关系;最后构建了一个异常预测模块,根据推理到的语义上下文信息进行异常事件检测.本文的上下文图推理模块基于平均场理论,通过使用多个带有消息传递模块的循环神经网络,迭代更新图的节点和边的状态,目的是从底层的视觉特征中推理得到高层的语义上下文.本文的异常预测模块包括注意力池化网络层和全连接网络层,通过输入语义上下文信息,计算视频帧的异常分数,从而正确地进行异常事件检测.实验中,设计了一个自训练策略,分别使用了无监督、半监督、弱监督和监督四种训练策略,以端到端的方式训练时空上下文图推理模块和异常预测模块.本文方法在四个公开的数据集上进行了实验,包括三个半监督的数据集Subway (Entrance/Exit)、Avenue和ShanghaiTech,以及一个监督的数据集UCF-Crime.与不使用上下文的方法相比,本文方法在Subway(Entrance/Exit)、Avenue和ShanghaiTech数据集上的无监督AUC指标分别提高了2.7%/3.1%、2.0%和2.9%,半监督AUC指标分别提高了3.5%/3.3%、4.0%和4.3%.在监督数据集UCF-Crime上,与没有使用上下文的方法相比,本文方法在半监督AUC、弱监督AUC和监督AUC的指标上分别提高了2.1%、0.4%和9.2%,取得了有竞争力的表现. 展开更多
关键词 异常事件检测 上下文建模与推理 上下文图 自训练策略 深度学习
在线阅读 下载PDF
基于视频的人群异常事件检测综述 被引量:27
4
作者 吴新宇 郭会文 +2 位作者 李楠楠 王欢 陈彦伦 《电子测量与仪器学报》 CSCD 2014年第6期575-584,共10页
随着公共安全问题的日益突出,公共场所人群异常事件的及时发现将有助于相关部门的及时响应和救援,从而降低群众人身伤亡和财产的损失。近年来,在智能监控和安防领域的发展下,基于视频的人群异常事件检测已成为图像处理、机器视觉、机器... 随着公共安全问题的日益突出,公共场所人群异常事件的及时发现将有助于相关部门的及时响应和救援,从而降低群众人身伤亡和财产的损失。近年来,在智能监控和安防领域的发展下,基于视频的人群异常事件检测已成为图像处理、机器视觉、机器学习等相关领域的研究热点。概述了基于视频的人群异常事件检测相关研究的概况、研究现状及未来的发展趋势。人群异常事件检测有两个基本问题,一个是基本事件的表示,一个是异常事件检测模型的建立。重点从这两个方面回顾人群异常事件检测技术的发展和常用的处理方法,并对研究难点及未来的发展趋势作了较为详细的分析。 展开更多
关键词 异常事件检测综述 人群异常事件 基本事件表示 异常事件检测模型
在线阅读 下载PDF
显著性光流直方图字典表示的群体异常事件检测 被引量:5
5
作者 岑翼刚 王文强 +2 位作者 李昂 梁列全 王恒友 《信号处理》 CSCD 北大核心 2017年第3期330-337,共8页
在视频监控系统已被广泛应用的今天,基于监控视频的群体异常事件检测已成为保障社会安全的迫切需要,越来越受到人们的重视。该文基于这一现状,提出了一个新的群体异常事件检测方案,实现对监控视频自动高效的检测。在特征提取方面,提出... 在视频监控系统已被广泛应用的今天,基于监控视频的群体异常事件检测已成为保障社会安全的迫切需要,越来越受到人们的重视。该文基于这一现状,提出了一个新的群体异常事件检测方案,实现对监控视频自动高效的检测。在特征提取方面,提出了显著性光流直方图特征描述符,并利用该特征描述符构建字典;在字典优化方面,提出了基于聚类的多字典组合学习框架,将原始的大字典分为多个子字典;最后,对于测试样本,找出最适合的子字典并计算测试样本在该子字典下的重建误差,即可判断测试样本是否异常。在两个数据集上的实验表明,与其他方法相比,该文提出的方法对拥挤场景下监控视频中的群体异常事件检测取得了较好的检测性能。 展开更多
关键词 异常事件检测 光流直方图 字典训练 聚类 稀疏重构
在线阅读 下载PDF
M-TAEDA:多变量水质参数时序数据异常事件检测算法 被引量:9
6
作者 毛莺池 齐海 +1 位作者 接青 王龙宝 《计算机应用》 CSCD 北大核心 2017年第1期138-144,共7页
在供水管网中部署传感器网络实时获取多个水质参数时间序列数据,当供水管网发生污染时,高效准确地检测水质异常是一个重要问题。提出多变量水质参数时间异常事件检测算法(M-TAEDA),利用BP模型分析多变量水质参数的时序数据,确定可能离群... 在供水管网中部署传感器网络实时获取多个水质参数时间序列数据,当供水管网发生污染时,高效准确地检测水质异常是一个重要问题。提出多变量水质参数时间异常事件检测算法(M-TAEDA),利用BP模型分析多变量水质参数的时序数据,确定可能离群点;结合贝叶斯序贯分析独立更新每个参数的事件概率,预测单个传感器节点检测的异常概率;将单变量的事件概率融合为统一多变量事件概率,融合判断异常事件。实验结果表明:BP模型模拟多变量水质参数进行预测可以达到90%精确度;与单变量参数时间异常事件检测算法(S-TAEDA)相比,M-TAEDA可以提高异常检出率约40%,降低误报率约45%。 展开更多
关键词 无线传感器网络 异常事件检测 BP模型 多变量水质参数 时间序列数据
在线阅读 下载PDF
基于多传感器信息融合的城市边坡监测数据异常事件检测 被引量:9
7
作者 刘刚 叶立新 +2 位作者 陈麒玉 陈根深 范文遥 《地质科技通报》 CAS CSCD 北大核心 2022年第2期13-25,共13页
为预防和管控城市突发地质灾害造成的人民生命和财产损失,国家针对城市地质灾害易发地区部署了大量的各类传感器,用来感知和监测城市边坡等地质体的变化情况,以支持对地质灾害的预警。从边坡监测数据特点和时序数据分析技术出发,针对监... 为预防和管控城市突发地质灾害造成的人民生命和财产损失,国家针对城市地质灾害易发地区部署了大量的各类传感器,用来感知和监测城市边坡等地质体的变化情况,以支持对地质灾害的预警。从边坡监测数据特点和时序数据分析技术出发,针对监测数据噪声混杂、模式分析困难、预警阈值的不确定性等问题,给出了一种基于多传感器信息融合的边坡监测数据异常事件检测方法。主要工作包括:①边坡监测数据变化模式可以归结为周期项、趋势项以及噪声项的叠加,实践中在预处理基础上对边坡监测数据进行周期为24 h的重采样,同时趋势项可以近似看作是经典的牛顿运动,以此构建形变运动模型,为卡尔曼滤波的状态转移提供理论支持;②采用集中式衰减记忆卡尔曼滤波,引入衰减记忆因子,对多传感器边坡监测数据进行特征级融合,降低了噪声的影响,提高了边坡监测数据的可靠性;③引入惩罚系数,应用改进的动态时间弯曲算法对于周期序列数据进行相似性度量。在此基础上基于K-means聚类和局部异常因子分析对边坡监测数据进行异常检测,并基于3σ准则确定预警阈值。该方法能将正常模式和异常模式的时序数据进行区分,有效检测出边坡监测数据的异常,为灾害预防提供支持。最后以深圳市典型边坡监测数据为例验证了此方法的可行性。 展开更多
关键词 时序数据 多传感器信息融合 卡尔曼滤波 动态时间弯曲 边坡监测数据异常事件检测
在线阅读 下载PDF
基于HMM监控视频的异常事件检测 被引量:4
8
作者 吕英丽 顾勇 张晓峰 《数据采集与处理》 CSCD 北大核心 2014年第6期1030-1035,共6页
针对智能监控系统中的行为分析与识别,将隐马尔可夫模型(Hidden Markov model,HMM)应用到智能视频监控系统的异常事件检测中。首先应用背景差法将运动目标提取出来。其次将运动目标的形状、颜色和帧间变化度等特征编码,生成特征向量。... 针对智能监控系统中的行为分析与识别,将隐马尔可夫模型(Hidden Markov model,HMM)应用到智能视频监控系统的异常事件检测中。首先应用背景差法将运动目标提取出来。其次将运动目标的形状、颜色和帧间变化度等特征编码,生成特征向量。训练时将特征向量送入HMM训练得到隐马尔可夫模型需要的参数A和B,检测时将特征向量送入HMM检测系统检测是否有异常事件发生。最后的实验结果表明,该方法能快速有效地检测监控视频中的异常事件的发生。 展开更多
关键词 监控视频 隐马尔可夫模型 异常事件检测
在线阅读 下载PDF
基于线性动态系统稀疏编码的异常事件检测 被引量:2
9
作者 刘洋 李一波 《计算机科学》 CSCD 北大核心 2014年第10期300-305,共6页
线性动态系统模型结合稀疏编码实现异常事件检测。线性动态系统可有效地捕捉动态纹理在时间和空间的转移信息,描述视频的时空小块。然而,线性动态系统属于非欧氏空间,无法直接用传统的稀疏编码进行异常检测。基于约束凸优化公式,将相似... 线性动态系统模型结合稀疏编码实现异常事件检测。线性动态系统可有效地捕捉动态纹理在时间和空间的转移信息,描述视频的时空小块。然而,线性动态系统属于非欧氏空间,无法直接用传统的稀疏编码进行异常检测。基于约束凸优化公式,将相似性变换与稀疏编码结合,可实现线性动态系统稀疏编码的优化求解。实验表明,所提出的方法具有更好的性能。 展开更多
关键词 稀疏编码 异常事件检测 线性动态系统 相似性变换
在线阅读 下载PDF
WSN中基于压缩感知的异常事件检测方案
10
作者 姜参 马荣娟 《计算机工程》 CAS CSCD 2014年第3期137-142,共6页
异常事件检测问题是无线传感器网络中的研究热点之一。为提高检测效率,提出一种基于压缩感知的异常事件检测方案。通过压缩采样得到各个节点感知数据的测量值,将异常事件检测问题建模为带权的l_1范数最小化问题,采用正交匹配追踪算法进... 异常事件检测问题是无线传感器网络中的研究热点之一。为提高检测效率,提出一种基于压缩感知的异常事件检测方案。通过压缩采样得到各个节点感知数据的测量值,将异常事件检测问题建模为带权的l_1范数最小化问题,采用正交匹配追踪算法进行迭代求解,根据检测函数对求解结果进行判断,并依据判断结果更新权值,开始下一轮迭代,直到检测出无线传感器网络中存在的所有异常事件。仿真实验结果表明,该方案的漏检率和误警率较低,与CCM和GEP-ADS方案相比,分别能节省约4.1%和5.8%的能耗。 展开更多
关键词 无线传感器网络 异常事件检测 压缩感知 测量值 迭代 权值
在线阅读 下载PDF
压缩感知理论在传感器异常事件检测中的应用
11
作者 蒋琳琼 《激光杂志》 北大核心 2015年第12期123-126,共4页
无线传感器存在网络节点多、能量有限等特点,针对传统方法异常事件检测成功率低的缺陷,利用压缩感知理论的信号重构优点,将压缩感知理论引入到无线传感器网络异常事件检测中。首先对无线传感器网络的异常事件检测研究现状进行分析,然后... 无线传感器存在网络节点多、能量有限等特点,针对传统方法异常事件检测成功率低的缺陷,利用压缩感知理论的信号重构优点,将压缩感知理论引入到无线传感器网络异常事件检测中。首先对无线传感器网络的异常事件检测研究现状进行分析,然后分析无线传感器网络模型以及异常事件检测问题,并采用压缩感知理论对异常事件进行分析和检测,最后,采用仿真实验对有效性进行验证。结果表明,压缩感知理论可以有效对无线传感器网络的异常事件进行处理,提高了检测成功率,降低了误检测率,完全可以满足无线传感器网络的实际应用要求。 展开更多
关键词 传感器网络 异常事件检测 压缩感知理论 网络分簇
在线阅读 下载PDF
基于改进CoSaMP的农田信息异常事件检测算法 被引量:6
12
作者 肖利平 全腊珍 +1 位作者 余波 霍览宇 《农业机械学报》 EI CAS CSCD 北大核心 2019年第10期230-235,共6页
针对农田监测区域大、监测节点能量有限以及异常事件具有偶发性等特点,提出了一种基于改进压缩采样匹配追踪的农田信息异常事件检测算法(DP-CoSaMP)。针对传统压缩采样匹配追踪(Compressive sampling matching pursuit,Co Sa MP)算法中... 针对农田监测区域大、监测节点能量有限以及异常事件具有偶发性等特点,提出了一种基于改进压缩采样匹配追踪的农田信息异常事件检测算法(DP-CoSaMP)。针对传统压缩采样匹配追踪(Compressive sampling matching pursuit,Co Sa MP)算法中相似原子选择和稀疏度要求已知问题,引进Dice系数有效区分原子相关性,保证选择最优原子;利用峰值信噪比(Peak signal to noise ratio,PSNR)与匹配信号残差具有相似变化趋势,动态调整算法迭代次数,避免稀疏度获取困难问题。仿真实验结果表明,本文算法异常事件检测成功率较现有算法提高了20%,网络能耗降低了15%,平均检测时间减少了50%。 展开更多
关键词 农田信息监测 无线传感器网络 异常事件检测 压缩感知理论 DP-CoSaMP
在线阅读 下载PDF
基于时空融合图网络学习的视频异常事件检测 被引量:12
13
作者 周航 詹永照 毛启容 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期48-59,共12页
视频中异常事件所体现的时空特征存在着较强的相关关系.针对视频异常事件发生的时空特征相关性而影响检测性能问题,提出了基于时空融合图网络学习的视频异常事件检测方法,该方法针对视频片段的特征分别构建空间相似图和时间连续图,将各... 视频中异常事件所体现的时空特征存在着较强的相关关系.针对视频异常事件发生的时空特征相关性而影响检测性能问题,提出了基于时空融合图网络学习的视频异常事件检测方法,该方法针对视频片段的特征分别构建空间相似图和时间连续图,将各片段对应为图中的节点,考虑各节点特征与其他节点特征的Top-k相似性动态形成边的权重,构成空间相似图;考虑各节点的m个时间段内的连续性形成边的权重,构成时间连续图.将空间相似图和时间连续图进行自适应加权融合形成时空融合图卷积网络,并学习生成视频特征.在排序损失中加入图的稀疏项约束降低图模型的过平滑效应并提升检测性能.在UCF-Crime和ShanghaiTech等视频异常事件数据集上进行了实验,以接收者操作曲线(receiver operating characteristic curve,ROC)以及曲线下面积(area under curve,AUC)值作为性能度量指标.在UCF-Crime数据集下,提出的方法在AUC上达到80.76%,比基准线高5.35%;在ShanghaiTech数据集中,AUC达到89.88%,比同类最好的方法高5.44%.实验结果表明:所提出的方法可有效提高视频异常事件检测的性能. 展开更多
关键词 视频异常事件检测 空间相似图 时间连续图 自适应加权 图卷积网络
在线阅读 下载PDF
基于卷积自编码器分块学习的视频异常事件检测与定位 被引量:8
14
作者 李欣璐 吉根林 赵斌 《数据采集与处理》 CSCD 北大核心 2021年第3期489-497,共9页
视频异常事件检测与定位旨在检测视频中发生的异常事件,并锁定其在视频中发生的位置。但是视频场景复杂多样,并且异常发生的位置随机多变,导致发生的异常事件难以被精准定位。本文提出了一种基于卷积自编码器分块学习的视频异常事件检... 视频异常事件检测与定位旨在检测视频中发生的异常事件,并锁定其在视频中发生的位置。但是视频场景复杂多样,并且异常发生的位置随机多变,导致发生的异常事件难以被精准定位。本文提出了一种基于卷积自编码器分块学习的视频异常事件检测与定位方法,首先将视频帧进行均匀划分,提取视频帧中每一块的光流和方向梯度直方图(Histogram of oriented gradient,HOG)特征,然后为视频中的不同图块分别设计卷积自编码器以学习正常运动模式特征,最后在异常事件检测过程中利用卷积自编码器的重构误差大小进行异常判断。该方法可以有效地针对视频不同区域进行特征学习,提升了异常事件定位的准确度。所提方法在UCSD Ped1、UCSD Ped2、CUHK Avenue三个公开数据集上进行实验,结果表明该方法能够准确定位异常事件,并且帧级别AUC(Area under the curve)平均提升了5.61%。 展开更多
关键词 视频异常事件检测 异常事件定位 分块学习 卷积自编码器 深度学习
在线阅读 下载PDF
基于非局部注意力生成对抗网络的视频异常事件检测方法 被引量:4
15
作者 孙奇 吉根林 张杰 《计算机科学》 CSCD 北大核心 2022年第8期172-177,共6页
针对异常事件的不确定性,文中选择使用未来帧预测的方式对视频进行异常事件检测。通过正常样本对预测模型进行训练,使模型能够准确预测不包含异常事件的未来帧,但对于包含未知事件的视频帧,模型无法进行预测,利用生成对抗网络以及表观... 针对异常事件的不确定性,文中选择使用未来帧预测的方式对视频进行异常事件检测。通过正常样本对预测模型进行训练,使模型能够准确预测不包含异常事件的未来帧,但对于包含未知事件的视频帧,模型无法进行预测,利用生成对抗网络以及表观约束和运动约束对用于预测的生成器模型进行训练。为了减少相关目标特征丢失,提出了非局部注意力U型网络生成器(Nonlocal Attention Unet Generator,NA-UnetG)模型,提升了生成器的预测精度,同时提升了视频异常事件检测的准确度。通过公开数据集CUHK Avenue和UCSD Ped2对所提方法进行实验验证,实验结果表明,所提方法的AUC指标优于其他方法,AUC分别达到了83.4%和96.3%。 展开更多
关键词 视频异常事件检测 生成对抗网络 视频预测 非局部注意力机制 深度学习
在线阅读 下载PDF
监控视频中异常事件检测技术研究进展 被引量:18
16
作者 吉根林 许振 +1 位作者 李欣璐 赵斌 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第5期685-694,共10页
异常事件检测技术是当前智能监控技术研究领域关注的一个热点,作为计算机视觉的重要研究内容,其主要目标是利用计算机自动检测出可被视为异常的事件。传统方法存在低层视频特征描述能力弱,异常检测方法计算代价大,对复杂场景建模时鲁棒... 异常事件检测技术是当前智能监控技术研究领域关注的一个热点,作为计算机视觉的重要研究内容,其主要目标是利用计算机自动检测出可被视为异常的事件。传统方法存在低层视频特征描述能力弱,异常检测方法计算代价大,对复杂场景建模时鲁棒性差等方面的限制。本文结合国内外的研究现状和目前的主流方法,介绍了监控视频中异常事件检测涉及的基本技术,分析了各类监控视频特征提取方法、特征学习模型和异常检测方法的优缺点,整理归纳了可用于监控视频中异常事件检测的常用实验数据集,最后讨论了监控视频中异常事件检测技术的难点、挑战及未来发展趋势。 展开更多
关键词 异常事件检测 监控视频分析 行为识别 计算机视觉 机器学习
在线阅读 下载PDF
基于双流残差网络的视频异常事件检测研究 被引量:3
17
作者 王梓旭 金立左 +2 位作者 张珊 苏国伟 陈瑞杰 《电光与控制》 CSCD 北大核心 2022年第8期88-93,共6页
针对传统视频异常事件检测算法准确率低、鲁棒性差等问题,提出了一种基于双流残差网络的视频异常事件检测算法。该算法综合运用深层残差网络、时序分割网络以及卷积融合策略。在传统双流网络利用单帧图像和多帧光流图像分别提取运动信... 针对传统视频异常事件检测算法准确率低、鲁棒性差等问题,提出了一种基于双流残差网络的视频异常事件检测算法。该算法综合运用深层残差网络、时序分割网络以及卷积融合策略。在传统双流网络利用单帧图像和多帧光流图像分别提取运动信息和时序行为的基础上,进一步加深网络深度,扩展运动信息建模能力;同时,利用分段构建网络的方式充分提取时序特征,提升对长时间视频处理效果;并且将高维时空特征进行融合,充分挖掘视频中的时空关联关系,得到最终检测结果。在公开的UCF-Crime和XD-Violence数据集上训练和验证的实验结果表明,提出的基于双流残差网络的视频异常事件检测算法相较于仅使用单模态网络(空间流网络)的方法准确率提升约10%,与传统双流网络相比,准确率也分别提升3.2%和6.1%。 展开更多
关键词 视频异常事件检测 多模态特征融合 残差网络 双流网络
在线阅读 下载PDF
基于稀疏表示和低秩逼近的自适应异常事件检测算法 被引量:2
18
作者 周晓雨 余博思 丁恩杰 《南京理工大学学报》 EI CAS CSCD 北大核心 2016年第6期666-673,共8页
针对传统异常事件检测算法没有考虑视频数据低秩特性的问题,提出了基于低秩稀疏编码模型的字典学习算法。对提取的多尺度三维时空梯度特征进行K-均值聚类。利用低秩稀疏编码模型进行每一个特征聚类的字典学习。通过迭代聚类和字典学习... 针对传统异常事件检测算法没有考虑视频数据低秩特性的问题,提出了基于低秩稀疏编码模型的字典学习算法。对提取的多尺度三维时空梯度特征进行K-均值聚类。利用低秩稀疏编码模型进行每一个特征聚类的字典学习。通过迭代聚类和字典学习获取所有的正常行为模式。采用公共数据集UCSD Ped1和Avenue检测该算法的性能。与社会力(SF)、混合概率主成分分析(MPPCA)、社会力-混合概率主成分分析(SF-MPPCA)、混合动态纹理(MDT),Adam、子空间(Suspace)、稀疏组合学习框架(SCLF)7种方法对比,该文算法具有较高的正确率和较强的实时性。 展开更多
关键词 稀疏表示 低秩逼近 异常事件检测 低秩稀疏编码模型 字典学习 K-均值聚类
在线阅读 下载PDF
基于HEVC的车辆异常事件检测 被引量:3
19
作者 常同伟 梁久祯 +1 位作者 吴秦 王念兵 《数据采集与处理》 CSCD 北大核心 2018年第2期370-378,共9页
当前传统交通事故检测和查阅主要通过人工监测的方法,这种方法效率低且实时性差,本文提出一种基于最新压缩域视频编码标准HEVC(High-efficiency video coding)的车辆异常事件检测方法。首先对HEVC码流中提取出的运动矢量信息进行运动矢... 当前传统交通事故检测和查阅主要通过人工监测的方法,这种方法效率低且实时性差,本文提出一种基于最新压缩域视频编码标准HEVC(High-efficiency video coding)的车辆异常事件检测方法。首先对HEVC码流中提取出的运动矢量信息进行运动矢量累积迭代和中值滤波的预处理,之后根据提取出的块划分信息和运动矢量信息计算运动对象的运动强度,然后根据运动强度值和八连通区域法提取出运动对象,最后根据空间距离法和运动强度判别法检测出视频序列中发生的车辆异常事件。实验证明,该方法可以准确地检测出视频序列中发生的车辆异常事件;对于有着快速移动的运动目标以及多个运动目标的视频效果更好。 展开更多
关键词 HEVC 运动矢量 运动强度计算 运动对象提取 异常事件检测
在线阅读 下载PDF
深度自编码与自更新稀疏组合的异常事件检测算法 被引量:2
20
作者 王倩倩 苗夺谦 张远健 《智能系统学报》 CSCD 北大核心 2020年第6期1197-1203,共7页
基于深度学习的异常检测算法输入通常为视频帧或光流图像,检测精度和速度较低。针对上述问题,提出了一种以运动前景块为中心的卷积自动编码器和自更新稀疏组合学习(convolutional auto-encoders and selfupdating sparse combination le... 基于深度学习的异常检测算法输入通常为视频帧或光流图像,检测精度和速度较低。针对上述问题,提出了一种以运动前景块为中心的卷积自动编码器和自更新稀疏组合学习(convolutional auto-encoders and selfupdating sparse combination learning,CASSC)算法。首先,采用自适应混合高斯模型(gaussian mixture model,GMM)提取视频前景,并以滑动窗口的方式根据前景像素点占比过滤噪声;其次,构建3个卷积自动编码器提取运动前景块的时空特征;最后,使用自更新稀疏组合学习对特征进行重构,依据重构误差进行异常判断。实验结果表明,与现有算法相比,该方法不仅有效地提高了异常事件检测的准确性,且可以满足实时检测需求。 展开更多
关键词 深度学习 稀疏组合 自动编码器 自更新 异常事件检测 卷积神经网络 无监督学习 稀疏学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部