期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
五峰山长江大桥北锚碇沉井基础首次下沉方法研究 被引量:9
1
作者 潘桂林 李德杰 冯龙健 《铁道建筑》 北大核心 2021年第12期48-51,57,共5页
以五峰山长江大桥北锚碇沉井首次下沉为工程背景开展现场载荷板试验,得到沉井荷载作用下土体固结后复合地基极限承载力,计算了沉井首次开挖下沉所需开挖面积,对比分析了锅底开挖下沉、新型十字拉槽以及预留核心土开挖下沉方法。结果表明... 以五峰山长江大桥北锚碇沉井首次下沉为工程背景开展现场载荷板试验,得到沉井荷载作用下土体固结后复合地基极限承载力,计算了沉井首次开挖下沉所需开挖面积,对比分析了锅底开挖下沉、新型十字拉槽以及预留核心土开挖下沉方法。结果表明:由于沉井接高过程中复合地基极限承载力明显提高,须考虑复合地基的固结效应,得到真实的地基极限承载力。采用锅底开挖下沉方法沉井开裂风险大;采用新型十字拉槽以及预留核心土开挖下沉方法,沉井结构安全。与预留核心土和锅底开挖下沉方法相比,十字拉槽法对下沉困难和地基不均匀性有更好的适应性,是一种适用于大型沉井首次下沉的方法。十字拉槽法首次应用于五峰山长江大桥北锚碇特大型沉井施工,保证了沉井顺利安全、快速下沉。 展开更多
关键词 五峰山长江大桥 锚碇基础 载荷板试验 特大型沉井 开挖下沉 开挖方法
在线阅读 下载PDF
涪江特大桥沉井基础的施工
2
作者 陈婕妤 王家新 《铁道建筑》 北大核心 1997年第8期29-31,共3页
通过涪江大桥16个沉井基础的施工实践表明,当土层渗水性差、土层稳定、抽水不引起流砂的情况,采用排水开挖下沉沉井的方法,既简便又可保证施工质量。否则采用不排水开挖下沉沉井也是行之有效的。
关键词 沉井基础 排水开挖下沉 涪江特大桥 工程施工
在线阅读 下载PDF
Differential uplift and settlement between inner column and diaphragm wall in top-down excavation 被引量:5
3
作者 王丽 郑刚 欧若楠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3578-3590,共13页
Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method... Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection. 展开更多
关键词 top-down method differential uplift differential settlement jump-layer excavation diaphragm wall with outriggers
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部