本文研究开尔文探针力显微镜(KPFM)中多频率方法的实现。KPFM中的多频率方法同时激发微悬臂探针的第一次和第二次的本征机械振动模式并分别用于样品形貌和表面电势成像。据此,本文设计了一种基于传统比例-积分控制器基本原理的模拟式反...本文研究开尔文探针力显微镜(KPFM)中多频率方法的实现。KPFM中的多频率方法同时激发微悬臂探针的第一次和第二次的本征机械振动模式并分别用于样品形貌和表面电势成像。据此,本文设计了一种基于传统比例-积分控制器基本原理的模拟式反馈控制器,用以实现探针的调控。测试表明,该反馈控制器带宽可达约5 k Hz,并利用该反馈控制器研制出了多频率KPFM,其电势测量灵敏度优于5 m V。利用该多频率KPFM,对注入电荷后的介电薄膜样品进行测试,一次成像即可得到样品的形貌图及局域电势的二维分布图。该多频率KPFM技术可广泛应用于电子材料与器件的电特性表征。展开更多
主要介绍了几种目前应用比较广泛的氢分布检测技术的原理及其在氢渗透和氢脆研究中的应用,包括三维原子探针(Atom Probe Tomography,APT)、扫描开尔文探针力显微镜(Scanning Kelvin Probe Force Microscopy,SKPFM)、二次离子质谱法(Seco...主要介绍了几种目前应用比较广泛的氢分布检测技术的原理及其在氢渗透和氢脆研究中的应用,包括三维原子探针(Atom Probe Tomography,APT)、扫描开尔文探针力显微镜(Scanning Kelvin Probe Force Microscopy,SKPFM)、二次离子质谱法(Secondary Ion Mass Spectroscopy,SIMS)和氢微印技术(Hydrogen microprinting technique,HMT),以及可用来检测氢浓度的热脱附质谱技术(Thermal desorption spectrometry,TDS)等。总结了几种检测技术的原理和特点,并简要介绍了它们在与H有关领域里的典型应用。其中,APT和SIMS是利用质谱法直接检测H,以获得H在材料中的分布;SKPFM是通过H引起的电位变化,来获得H的分布;HMT是通过置换反应,即H原子将Ag+置换为Ag原子,Ag原子沉积在试样表面的分布来表征H的分布;热脱附法则是通过恒定的升温速率下H脱附速率对不同陷阱的敏感性差异,来获得不同陷阱中的H浓度以及H与陷阱的相互作用。这几种检测技术的空间分辨率可达亚纳米、纳米、微米至数微米直至毫米级。另外,SKPFM还具有时间分辨的功能。这些技术在H检测方面的应用,使得研究者对H在材料中的微观分布与聚集状态有了直观地认识,进而对由氢引起的失效破坏(即氢致延迟断裂的微观机理)有了更深刻的理解。最后还介绍了目前比较常用的检测H浓度的方法。展开更多
文摘本文研究开尔文探针力显微镜(KPFM)中多频率方法的实现。KPFM中的多频率方法同时激发微悬臂探针的第一次和第二次的本征机械振动模式并分别用于样品形貌和表面电势成像。据此,本文设计了一种基于传统比例-积分控制器基本原理的模拟式反馈控制器,用以实现探针的调控。测试表明,该反馈控制器带宽可达约5 k Hz,并利用该反馈控制器研制出了多频率KPFM,其电势测量灵敏度优于5 m V。利用该多频率KPFM,对注入电荷后的介电薄膜样品进行测试,一次成像即可得到样品的形貌图及局域电势的二维分布图。该多频率KPFM技术可广泛应用于电子材料与器件的电特性表征。
文摘主要介绍了几种目前应用比较广泛的氢分布检测技术的原理及其在氢渗透和氢脆研究中的应用,包括三维原子探针(Atom Probe Tomography,APT)、扫描开尔文探针力显微镜(Scanning Kelvin Probe Force Microscopy,SKPFM)、二次离子质谱法(Secondary Ion Mass Spectroscopy,SIMS)和氢微印技术(Hydrogen microprinting technique,HMT),以及可用来检测氢浓度的热脱附质谱技术(Thermal desorption spectrometry,TDS)等。总结了几种检测技术的原理和特点,并简要介绍了它们在与H有关领域里的典型应用。其中,APT和SIMS是利用质谱法直接检测H,以获得H在材料中的分布;SKPFM是通过H引起的电位变化,来获得H的分布;HMT是通过置换反应,即H原子将Ag+置换为Ag原子,Ag原子沉积在试样表面的分布来表征H的分布;热脱附法则是通过恒定的升温速率下H脱附速率对不同陷阱的敏感性差异,来获得不同陷阱中的H浓度以及H与陷阱的相互作用。这几种检测技术的空间分辨率可达亚纳米、纳米、微米至数微米直至毫米级。另外,SKPFM还具有时间分辨的功能。这些技术在H检测方面的应用,使得研究者对H在材料中的微观分布与聚集状态有了直观地认识,进而对由氢引起的失效破坏(即氢致延迟断裂的微观机理)有了更深刻的理解。最后还介绍了目前比较常用的检测H浓度的方法。