期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可解释性机器学习的建筑物物化阶段碳排放量预测研究 被引量:5
1
作者 王志强 任金哥 +1 位作者 韩硕 李文超 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2454-2466,共13页
现有碳排放计算方法存在数据量大、计算繁琐和仅适用于事中、事后控制等问题,不利于设计人员在设计阶段进行碳减排工作。为此,研究将机器学习引入建筑物碳排放量计算领域,帮助设计人员在早期设计阶段获得建筑物物化阶段的碳排放信息,提... 现有碳排放计算方法存在数据量大、计算繁琐和仅适用于事中、事后控制等问题,不利于设计人员在设计阶段进行碳减排工作。为此,研究将机器学习引入建筑物碳排放量计算领域,帮助设计人员在早期设计阶段获得建筑物物化阶段的碳排放信息,提供碳减排参考。首先,收集并建立建筑物物化阶段碳排放数据库;其次,基于5个建筑物特征,建立4种不同类型的机器学习模型,并根据评价指标对模型性能进行评价;最后,利用沙普利加和解释(Shapley Additive exPlanations, SHAP)和部分依赖图(Partial Dependence Plot, PDP)验证最优模型应用的合理性,并深入挖掘各特征与碳排放之间的复杂关系,为建筑物碳减排提供新的信息。结果显示:各机器学习模型可以很好地预测建筑物物化阶段碳排放过程,其中建立的极度随机树(Extremely Randomized Trees, ET)模型对碳排放的预测表现最优;机器学习模型各特征对预测结果的影响与现有研究相似,表明了机器学习模型预测结果的可靠性与合理性;机器学习模型可以深入挖掘各特征与碳排放之间的复杂关系,为建筑物碳减排提供新的指导。 展开更多
关键词 环境工程学 建筑物物化阶段 碳排放 机器学习 可解释性分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部