期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于深度学习的SAR城市建筑区域叠掩精确检测方法
被引量:
4
1
作者
田野
丁赤飚
+1 位作者
张福博
石民安
《雷达学报(中英文)》
EI
CSCD
北大核心
2023年第2期441-455,共15页
建筑物叠掩检测在城市三维合成孔径雷达(3D SAR)成像流程中是至关重要的步骤,其不仅影响成像效率,还直接影响最终成像的质量。目前,用于建筑物叠掩检测的算法往往难以提取远距离全局空间特征,也未能充分挖掘多通道SAR数据中关于叠掩的...
建筑物叠掩检测在城市三维合成孔径雷达(3D SAR)成像流程中是至关重要的步骤,其不仅影响成像效率,还直接影响最终成像的质量。目前,用于建筑物叠掩检测的算法往往难以提取远距离全局空间特征,也未能充分挖掘多通道SAR数据中关于叠掩的丰富特征信息,导致现有叠掩检测算法的精确度无法满足城市3D SAR成像的要求。为此,该文结合Vision Transformer (ViT)模型和卷积神经网络(CNN)的优点,提出了一种基于深度学习的SAR城市建筑区域叠掩精确检测方法。ViT模型能够通过自注意力机制有效提取全局特征和远距离特征,同时CNN有着很强的局部特征提取能力。此外,该文所提方法还基于专家知识增加了用于挖掘通道间叠掩特征和干涉相位叠掩特征的模块,提高算法的准确率与鲁棒性,同时也能够有效地减轻模型在小样本数据集上的训练压力。最后在该文构建的机载阵列SAR数据集上测试,实验结果表明,该文所提算法检测准确率达到94%以上,显著高于其他叠掩检测算法。
展开更多
关键词
深度学习
专家知识
3D
SAR成像
建筑区域叠掩检测
Vision
Transformer模型
在线阅读
下载PDF
职称材料
题名
一种基于深度学习的SAR城市建筑区域叠掩精确检测方法
被引量:
4
1
作者
田野
丁赤飚
张福博
石民安
机构
中国科学院空天信息创新研究院微波成像技术国家级重点实验室
中国科学院空天信息创新研究院
中国科学院大学电子电气与通信工程学院
出处
《雷达学报(中英文)》
EI
CSCD
北大核心
2023年第2期441-455,共15页
基金
国家重点研发计划(2021YFA0715404)。
文摘
建筑物叠掩检测在城市三维合成孔径雷达(3D SAR)成像流程中是至关重要的步骤,其不仅影响成像效率,还直接影响最终成像的质量。目前,用于建筑物叠掩检测的算法往往难以提取远距离全局空间特征,也未能充分挖掘多通道SAR数据中关于叠掩的丰富特征信息,导致现有叠掩检测算法的精确度无法满足城市3D SAR成像的要求。为此,该文结合Vision Transformer (ViT)模型和卷积神经网络(CNN)的优点,提出了一种基于深度学习的SAR城市建筑区域叠掩精确检测方法。ViT模型能够通过自注意力机制有效提取全局特征和远距离特征,同时CNN有着很强的局部特征提取能力。此外,该文所提方法还基于专家知识增加了用于挖掘通道间叠掩特征和干涉相位叠掩特征的模块,提高算法的准确率与鲁棒性,同时也能够有效地减轻模型在小样本数据集上的训练压力。最后在该文构建的机载阵列SAR数据集上测试,实验结果表明,该文所提算法检测准确率达到94%以上,显著高于其他叠掩检测算法。
关键词
深度学习
专家知识
3D
SAR成像
建筑区域叠掩检测
Vision
Transformer模型
Keywords
Deep learning
Expert knowledge
3D SAR imaging
Building area layover detection
Vision Transformer(ViT)model
分类号
TN957.52 [电子电信—信号与信息处理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于深度学习的SAR城市建筑区域叠掩精确检测方法
田野
丁赤飚
张福博
石民安
《雷达学报(中英文)》
EI
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部