The small-signal model of the photovoltaic generation system was built in a few references,and the sensitivity study of the dynamics process was performed.However,the dynamic model of the photovoltaic(PV)cells was not...The small-signal model of the photovoltaic generation system was built in a few references,and the sensitivity study of the dynamics process was performed.However,the dynamic model of the photovoltaic(PV)cells was not considered in these references,and the small-signal stability analysis and controllers'parameters design were not carried out using the proposed small-signal model.Therefore,a complete small-signal model of the photovoltaic generation system containing PV panels,inverters,controllers and power grid was built.The stability of the system after suffering a small disturbance was analyzed according to the eigenvalues.By means of eigenvalues participation factors analysis,the sensitivity of each mode to state variables was learnt,thereby the origin and characteristics of each mode was disclosed.Then,the eigenvalues traces were calculated,according to which controller's parameters were designed.A simulation model of the system based on Matlab/Simulink was presented.The simulation results show that the system is stable after suffering small disturbance of solar radiation intensity step,the design of the controller's parameters is proper,and the system dynamic responses are consistent with the result of small-signal analysis,which proved that the small-signal modeling and analysis in this paper are correct.展开更多
The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and ...The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and small perturbation were studied.The analytical and numerical results show that widening (shrinking) road can enhance (reduce) the equilibrium speed and flow,and the increments (decrements) will increase with the absolute value of road width gradient.In addition,the numerical results illustrate that the new model can describe the effects of road width on the evolutions of uniform flow and small perturbation.展开更多
According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and en...According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and energy consumption model were constructed. Based on these models, computer simulation program of cutting loads was developed with VB software. The mechanical parameters of mining head were obtained in the cutting depth range of 5160 mm. Making use of the simulation results, the effect of cutting depth of spiral mining head on the mining process was studied. The results show that the maximum force of single pick is 4.7051kN, the maximum force and torque of spiral drum of mining head are respectively 34.1668kN and 3.8795kN·m at the cutting depth of 160mm.展开更多
Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume cont...Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.展开更多
Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of th...Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.展开更多
The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away fro...The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away from the engineering practice. The experimental methods are time-consuming and financial expensive, even unrealizable due to the lack of suitable sensors. Numerical simulations can bridge the gap between the theoretical analysis and experimental techniques. A complete overall dynamic model of maglev levitation system is derived in this work, which includes the simple-supported bridges, the calculation of electromagnetic force with more details, the stress of levitation modules and the cabin. Based on the aforementioned model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, and self-excited vibration are the main issues that should be considered during the design process of controller. Then, the backstepping controller based on the mathematical model of the module with reasonable simplifications is proposed, and the stability proofs are listed. To show the advantage of controller, two numerical simulation experiments are carried out. Finally, the results illustrating closed-loop performance are provided.展开更多
A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were c...A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were calculated by the mathematical model.The solution content first increases and then decreases along the solution flow direction.At y/Hr=0.98(where Hr is the height of regenerator),air humidity increases from 1.99% to 2.348% firstly and then decreases.The experimental results were used to validate mathematical model.It is indicated that the simulation results agree with experimental data well.The results not only show that the mathematical model can be used to predict the performance of regenerator,but also has great value in the design and improvement of evaporative condensing regenerator.展开更多
Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predi...Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.展开更多
The tunnel field-effect transistor(TFET) is a potential candidate for the post-CMOS era.As one of the most important electrical parameters of a device,double gate TFET(DG-TFET) gate threshold voltage was studied.First...The tunnel field-effect transistor(TFET) is a potential candidate for the post-CMOS era.As one of the most important electrical parameters of a device,double gate TFET(DG-TFET) gate threshold voltage was studied.First,a numerical simulation study of transfer characteristic and gate threshold voltage in DG-TFET was reported.Then,a simple analytical model for DG-TFET gate threshold voltage VTG was built by solving quasi-two-dimensional Poisson equation in Si film.The model as a function of the drain voltage,the Si layer thickness,the gate length and the gate dielectric was discussed.It is shown that the proposed model is consistent with the simulation results.This model should be useful for further investigation of performance of circuits containing TFETs.展开更多
文摘The small-signal model of the photovoltaic generation system was built in a few references,and the sensitivity study of the dynamics process was performed.However,the dynamic model of the photovoltaic(PV)cells was not considered in these references,and the small-signal stability analysis and controllers'parameters design were not carried out using the proposed small-signal model.Therefore,a complete small-signal model of the photovoltaic generation system containing PV panels,inverters,controllers and power grid was built.The stability of the system after suffering a small disturbance was analyzed according to the eigenvalues.By means of eigenvalues participation factors analysis,the sensitivity of each mode to state variables was learnt,thereby the origin and characteristics of each mode was disclosed.Then,the eigenvalues traces were calculated,according to which controller's parameters were designed.A simulation model of the system based on Matlab/Simulink was presented.The simulation results show that the system is stable after suffering small disturbance of solar radiation intensity step,the design of the controller's parameters is proper,and the system dynamic responses are consistent with the result of small-signal analysis,which proved that the small-signal modeling and analysis in this paper are correct.
基金Project(NCET-08-0038) supported by the Program for New Century Excellent Talents in Chinese UniversityProjects(70701002,70971007 and 70521001) supported by the National Natural Science Foundation of ChinaProject(2006CB705503) supported by the National Basic Research Program of China
文摘The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and small perturbation were studied.The analytical and numerical results show that widening (shrinking) road can enhance (reduce) the equilibrium speed and flow,and the increments (decrements) will increase with the absolute value of road width gradient.In addition,the numerical results illustrate that the new model can describe the effects of road width on the evolutions of uniform flow and small perturbation.
基金Project(DY105 03 02 1) supported by the Deep Ocean Technology Development Itemproject(50474052) supportedby the National Natural Science Foundation of China
文摘According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and energy consumption model were constructed. Based on these models, computer simulation program of cutting loads was developed with VB software. The mechanical parameters of mining head were obtained in the cutting depth range of 5160 mm. Making use of the simulation results, the effect of cutting depth of spiral mining head on the mining process was studied. The results show that the maximum force of single pick is 4.7051kN, the maximum force and torque of spiral drum of mining head are respectively 34.1668kN and 3.8795kN·m at the cutting depth of 160mm.
基金Projects(51621006,51779251)supported by the National Natural Science Foundation of China。
文摘Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.
基金Projects(U1734207,51978585)supported by the National Natural Science Foundation of ChinaProject(2016 YFE 0205200)supported by the National Key Research and Development Program of China。
文摘Excessive vibrations inside buildings in the Lihu New Village caused by the Shenzhen Metro Line 2 underground railway were investigated by conducting analyses of the tunnel,the track irregularities,the stiffness of the fastening system,and the vibrations of the track system and the building at different speeds.A numerical simulation based on the dynamic coupling theory of the vehicle-track system was used to verify the experimental results.Suitable countermeasures were investigated.The results show that rail corrugation is the primary reason for the excessive vibration,and an increase in the stiffness of the vertical fastening system is the secondary reason.The solution was to eliminate the rail corrugation using rail grinding and decrease the vertical stiffness by changing the fastening system.The results of this study provide references for solving vibration problems caused by rail lines.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away from the engineering practice. The experimental methods are time-consuming and financial expensive, even unrealizable due to the lack of suitable sensors. Numerical simulations can bridge the gap between the theoretical analysis and experimental techniques. A complete overall dynamic model of maglev levitation system is derived in this work, which includes the simple-supported bridges, the calculation of electromagnetic force with more details, the stress of levitation modules and the cabin. Based on the aforementioned model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, and self-excited vibration are the main issues that should be considered during the design process of controller. Then, the backstepping controller based on the mathematical model of the module with reasonable simplifications is proposed, and the stability proofs are listed. To show the advantage of controller, two numerical simulation experiments are carried out. Finally, the results illustrating closed-loop performance are provided.
基金Project(PHR201007127) supported by Academic Human Resources Development Fund of Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, China Project(bsbe2010-05) supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment, China Project supported by the Doctoral Startup Foundation of Beijing University of Civil Engineering and Architecture, China
文摘A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator.Two-dimensional parameter distributions of air,solution and refrigerant were calculated by the mathematical model.The solution content first increases and then decreases along the solution flow direction.At y/Hr=0.98(where Hr is the height of regenerator),air humidity increases from 1.99% to 2.348% firstly and then decreases.The experimental results were used to validate mathematical model.It is indicated that the simulation results agree with experimental data well.The results not only show that the mathematical model can be used to predict the performance of regenerator,but also has great value in the design and improvement of evaporative condensing regenerator.
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.
基金Project(P140c090303110c0904)supported by NLAIC Research Fund,ChinaProject(JY0300122503)supported by the Research Fund for the Doctoral Program of Higher Education of China+1 种基金Projects(K5051225014,K5051225004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2010JQ8008)supported by the Natural Science Basic Research Plan in Shaanxi Province of China
文摘The tunnel field-effect transistor(TFET) is a potential candidate for the post-CMOS era.As one of the most important electrical parameters of a device,double gate TFET(DG-TFET) gate threshold voltage was studied.First,a numerical simulation study of transfer characteristic and gate threshold voltage in DG-TFET was reported.Then,a simple analytical model for DG-TFET gate threshold voltage VTG was built by solving quasi-two-dimensional Poisson equation in Si film.The model as a function of the drain voltage,the Si layer thickness,the gate length and the gate dielectric was discussed.It is shown that the proposed model is consistent with the simulation results.This model should be useful for further investigation of performance of circuits containing TFETs.