选用5种耕作覆盖方式和7个采收时期研究延收对籽粒产量、千粒重、籽粒蛋白质、脂肪、淀粉含量及其对应的产出量的影响,为玉米获得高产优质提供依据。结果表明:适时延收可使玉米产量及主要营养成分产出量明显增加,延收15 d ,产量增幅...选用5种耕作覆盖方式和7个采收时期研究延收对籽粒产量、千粒重、籽粒蛋白质、脂肪、淀粉含量及其对应的产出量的影响,为玉米获得高产优质提供依据。结果表明:适时延收可使玉米产量及主要营养成分产出量明显增加,延收15 d ,产量增幅为10.19%~15.62%,千粒重增幅为14.70%~20.39%;籽粒蛋白质含量增加0.26%~1.29%,产出量增加117~230 kg·hm^-2;脂肪含量增加0.05%~0.40%,产出量增加54~78 kg·hm^-2;淀粉含量虽然降低0.5%~4.9%,但产出量仍然增加340~773 kg·hm^-2。黄土高原地区春玉米延收15 d具有明显的增产和提高籽粒品质产量的效果,但增幅因耕作和覆盖方式不同而存在差异。展开更多
Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irre...Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented.First,a signal flow graph(SFG) is used to represent the algorithm for multiplication over GF(2m).Then,the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming,respectively.Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs,To the authors' knowledge,the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials.The proposed low latency designs are regular and modular,and therefore they are suitable for many time critical applications.展开更多
The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is no...The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.展开更多
基金Project(61174132) supported by the National Natural Science Foundation of ChinaProject(09JJ6098) supported by the Natural Science Foundation of Hunan Province,China
文摘Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented.First,a signal flow graph(SFG) is used to represent the algorithm for multiplication over GF(2m).Then,the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming,respectively.Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs,To the authors' knowledge,the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials.The proposed low latency designs are regular and modular,and therefore they are suitable for many time critical applications.
文摘The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.