波浪能资源是一种重要的海洋可再生能源,开发利用波浪能资源可以有效的缓解常规能源短缺问题带来的能源问题以及环境污染问题。对波浪能资源进行科学评估是进行海洋能资源利用的前提条件,本文利用欧洲中期天气预报中心(European Centre ...波浪能资源是一种重要的海洋可再生能源,开发利用波浪能资源可以有效的缓解常规能源短缺问题带来的能源问题以及环境污染问题。对波浪能资源进行科学评估是进行海洋能资源利用的前提条件,本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasting,ECMWF)第五代再分析数据集(ECMWF Reanalysis v5 ERA5),采用新的波浪能评估公式,对黄渤海海域1980—2018年间波浪能资源展开评估,主要计算指标包括波浪能可开发量频率、富集量频率、变异系数以及可利用波高占比等,结果显示:黄渤海区波浪能资源具有明显的季节性,秋冬季节较高,春夏季节较低,冬季是波浪能资源开发的最佳季节;波浪能富集区域主要集中在渤海海峡外侧、成山头东部以及长江口外海区域。在此基础上确定了波浪能资源的重点开发利用区,为后续的波浪能开发提供参考。展开更多
In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under diff...In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.展开更多
文摘波浪能资源是一种重要的海洋可再生能源,开发利用波浪能资源可以有效的缓解常规能源短缺问题带来的能源问题以及环境污染问题。对波浪能资源进行科学评估是进行海洋能资源利用的前提条件,本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasting,ECMWF)第五代再分析数据集(ECMWF Reanalysis v5 ERA5),采用新的波浪能评估公式,对黄渤海海域1980—2018年间波浪能资源展开评估,主要计算指标包括波浪能可开发量频率、富集量频率、变异系数以及可利用波高占比等,结果显示:黄渤海区波浪能资源具有明显的季节性,秋冬季节较高,春夏季节较低,冬季是波浪能资源开发的最佳季节;波浪能富集区域主要集中在渤海海峡外侧、成山头东部以及长江口外海区域。在此基础上确定了波浪能资源的重点开发利用区,为后续的波浪能开发提供参考。
基金Projects(51208066,51038002)supported by the National Natural Science Foundation of ChinaProject(20114316120001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China+5 种基金Project(2012-319-825-150)supported by Application and Basic Research Projects of Ministry of Transport ChinaProject(2013K28)supported by Transportation Science and Technology Plan Projects of Henan Province,ChinaProject(201102)supported by Transportation Science and Technology Plan Projects of Hunan Province,ChinaProject(YB2012B031)supported by Funding Projects of Hunan Provincial Outstanding Doctorate Dissertation,ChinaProject(2014gxjgclkf-002)supported by Open Fund of Key Laboratory of Road Structure and Material of Guangxi Province ChinaProject(kfj120101)supported by Open Fund of the Key Laboratory of Highway Engineering(Changsha University of Science and Technology),China
文摘In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.